
蒸気噴出に関する環境影響評価委員会

第**5**回2025/3/27

審議・報告資料

目次

1. 環境影響評価委員会の概要	2
2. 本評価委員会の進め方	3
3. 本評価委員会での評価対象	7
4. 本委員会での審議・報告内容	8
5. 噴出による汚染範囲と濃度(土壌調査)	9
6. 噴出による急性および慢性の人健康影響 (大気シミュレーション)	44
7. 噴出による生態系(動植物)への影響	51
8. 温泉資源への影響	60
9. 事業者実施モニタリングの状況	64
10. 今後の予定	66
11. とりまとめ	67

地形図出典:国土地理院

1. 環境影響評価委員会の概要

口 目的

▶ 蘭越町での蒸気噴出に関する周辺環境および環境を経由した人健康への影響(環境影響)を評価し、その住民への説明も含めて、諸対策への助言を行うことを目的とする

ロ評価委員会の組成

> 評価委員会

- ✓ 関係機関からなる「蒸気噴出対策連絡会議」の意向と助言を受けて組成した
- ✓ 中立的な立場で環境影響に関する評価を行う
- ✓ 蒸気噴出現象および住民等のご意見をふまえ評価対象を設定する
- ✓ 評価対象に関連する分野の学識経験者により構成する
- ✓ 必要により他分野の学識経験者の参画も検討する
- ✓ 評価委員会による助言を「蒸気噴出対策連絡会議」の後継組織である「環境モニタリング連絡会議」へ報告するとともに「環境モニタリング連絡会議」の意向もふまえて評価委員会の活動を行う

> オブザーバー

✓ 関係省庁と自治体が陪席する

> 事務局

✓ 評価委員会運営(情報整理・資料作成・会場設営等)を外部機関が実施する

2. 本評価委員会の進め方

ロ 蒸気噴出現象と住民対話に基づく評価委員会の活動

> 蒸気噴出現象の把握

✓ 環境影響を評価するにあたり、蒸気噴出により生じた現象を適切にモニタリング(調査)し、その結果に基づき諸対策について助言する

> 住民対話の必要性

✓ 対話の開始時には、住民のご心配やご意見を伺ったうえで、評価委員会の活動を進めていくことを説明する

2. 本評価委員会の進め方

ロ 住民対話の対象

> 関連する地区

✓ 蒸気噴出箇所の直近の地区および白濁水の流出があった二セコアンベツ川沿いの地区 を対象とし、必要に応じて対象地区を適宜追加する

ロ 委員会活動の経緯(1/2)

- ≥ 23/6/25 井戸掘削作業開始 ▶ 23/6/29 孔内から蒸気噴出 ▶ 23/8/18 蒸気噴出を概ね抑制 ▶ 23/8/28 井戸の埋戻し完了 ▶ 23/8/28 委員現場視察 ▶ 23/9/5 第6回蒸気噴出対策連絡会議 ⇒ 環境モニタリング連絡会議へ移行 ▶ 23/9/20・21・26・10/6 委員現場視察 ▶ 23/10/10-11 委員による近隣住民対話(第1回) ▶ 23/10/12 委員現地視察 ▶ 23/10/25 蒸気噴出に関する環境影響評価委員会(第1回) ▶ 23/11/6-7 委員による近隣住民対話(第2回) ▶ 23/11/14 積雪により土壌調査中止 ▶ 23/11/21 答申 (諮問23/11/9) 冬期の「飲用井戸」に関する水質モニタリングの検討頻度の検討 ▶ 23/12/6 環境モニタリング連絡会議 答申 (諮問23/12/4) 土壌調査 (積雪前) の降雪による中止の報告と今後の対応について > 23/12/11 ▶ 24/1/18 委員による近隣住民対話(第3回) ▶ 24/2/14 委員会ホームページ開設
- ▶ 24/3/12 答申 (諮問24/3/4) 土壌調査 (積雪前) の降雪による中止の報告と今後の対応について その2
- ▶ 24/3/12 答申 (回答24/3/4) 冬期の「飲用井戸」に関する水質モニタリングの検討頻度の検討 その2
- ▶ 24/3/29 蒸気噴出に関する環境影響評価委員会(第2回)

ロ 委員会活動の経緯(2/2)

- ▶ 24/4/26 委員による近隣住民対話(第4回)
- ▶ 24/5/21 生態系モニタリング着手・委員現地視察
- ▶ 24/5/27 委員現地視察(生態系モニタリング)
- ▶ 24/6/3-7 噴出による汚染範囲と濃度に関する土壌調査(試料採取)
- ▶ 24/6/3・6・7 委員現地視察(土壌調査)
- ▶ 24/6/10 委員現地視察(生態系モニタリング)
- ▶ 24/6/7 近隣住民への現場公開(D基地)
- ▶ 24/6/7 委員による近隣住民対話(追加実施)
- ▶ 24/7/4 答申(諮問24/7/2) 融雪後のモニタリング頻度について
- ▶ 24/8/2 委員現地視察(生態系モニタリング)
- ▶ 24/8/29 蒸気噴出に関する環境影響評価委員会(第3回)
- ▶ 24/9/18 答申(回答24/9/3) 融雪後のモニタリング頻度について その 2
- ▶ 24/9/18 答申(諮問24/9/10)河川水質モニタリングに関する採取方法・分析方法
- ▶ 24/10/1 委員による近隣住民対話(第5回)
- ▶ 24/10/30 答申(諮問24/10/8) 上水の検査について
- ▶ 24/11/6-7 白濁水の流路沿いの土壌調査(試料採取)・・・積雪により一部中止
- ▶ 24/12/25 蒸気噴出に関する環境影響評価委員会(第4回)
- ▶ 25/1/20 答申(諮問25/1/8) 上水に関する諮問
- ▶ 25/3/7 委員による近隣住民対話(第6回)
- ▶ 25/3/27 蒸気噴出に関する環境影響評価委員会(第5回)・・・本日

3. 本評価委員会での評価対象

ロ ステークホルダーのご意見をふまえた評価対象の設定

① 噴出による汚染範囲と濃度

✓ 蒸気噴出による砒素等の土壌および森林への汚染状況が不明なため、汚染の範囲とその 濃度を把握し、影響評価にあたっての基本的な条件とする

② 噴出による急性および慢性の人健康影響

- ✓ 噴出により発生した硫化水素ガスと砒素等(粉じん中)による人健康影響を評価する
- ✓ 急性(短期間)は噴出時、慢性(長期間)は噴出制圧後の人の健康影響を評価する

③ 噴出による生態系(動植物)への影響

✔ 噴出による森林、森林土壌、野生生物への影響を評価する

④ 大湯沼の温泉資源への影響

- ✓ 近隣地区で温泉の温度低下と泥(沈殿物)の減少に対する懸念があることから、蒸気噴出による影響の有無を考察し、今後の対応について助言する
- ※上記のほか、地元の経済や不動産価値といった社会経済影響も含め、総合的な評価を 求める住民の意見もある

注: 砒素等とは、土壌調査の結果に基づき、自然由来の重金属等のうち砒素・鉛・カドミウム・水銀・ ふっ素・ほう素とする

ロ 評価委員会(第5回)での審議・報告内容

審議①:噴出による汚染範囲と濃度

- 土壌調査(詳細調査結果)
 - ✓ 詳細調査での追加分析結果をふまえ、噴出による汚染物質・汚染範囲・濃度について第4回委員会での評価を再確認する
 - ✓ 今後の土壌調査の方針
 - ✓ その他、今後の留意事項など

審議②:噴出による急性および慢性の人健康影響

- 大気シミュレーション
 - ✓ 大気経由の曝露量評価のために行う大気シミュレーションの再現対象とアウトプットについて改めて確認する

審議③:噴出による生態系(動植物)への影響

- **) 生態系モニタリング**
 - ✓ これまでのモニタリング結果の総括
 - ✓ 今後の調査方針および予定

審議④:温泉資源への影響

- > 大湯沼堆積泥の調査
 - ✓ 事業者実施モニタリングのとりまとめデータ
 - ✓ 分析進捗報告と今後の作業予定

報告①:事業者実施モニタリングの状況

- ▶ 第4回委員会以降のモニタリング結果
 - ✓ 大気・水質・温泉モニタリング:河川や温泉は月1回観測を継続中、大気粉じんは冬期のため観測停止中で5月再開予定
 - ✓ 地下水モニタリング:冬期は採水を停止中、観測孔に自動計測機を設置したので次回以降はそちらのデータも提示予定

5. 噴出による汚染範囲と濃度(土壌調査)

ロ 土壌調査の概要

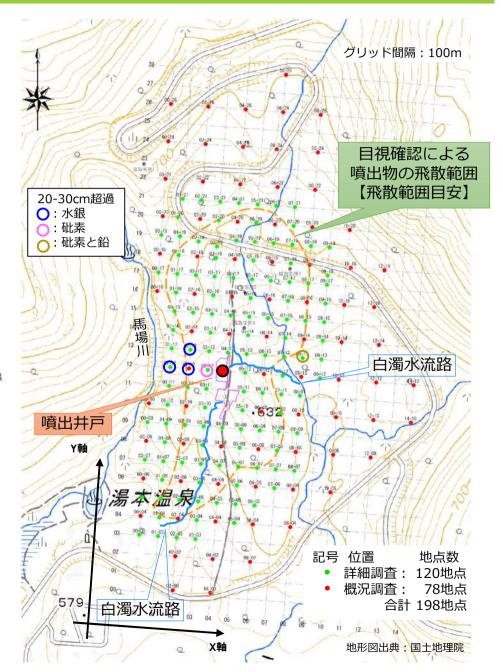
> 目的と実施内容 (p.10参照)

- ✓ 噴出物による汚染範囲を特定するため、2024 年6月に噴出井戸周辺の198地点で試料を採取 し、重金属等の全含有量と溶出量を測定した
- ✓ 各地点で噴出物・リター・土壌(深度30cmまで)の試料を採取した

➤ 分析結果概要 [p.10-34参照]

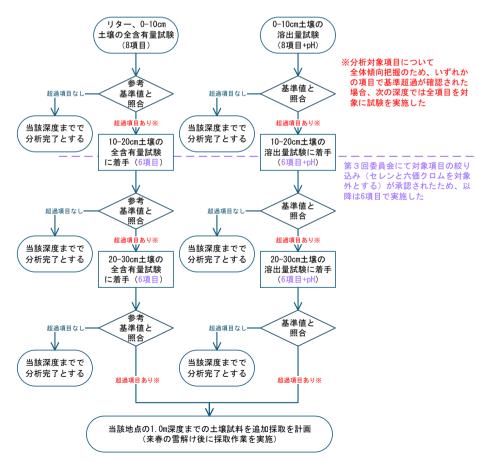
- ✓ 試験フロー【p.10】に基づき分析を実施した
- ✓ 砒素は噴出井戸から連続する濃度減衰が認められ、概ね飛散範囲目安と一致する
- ✓ 砒素・水銀・鉛の参考基準等[※]超過が認められる

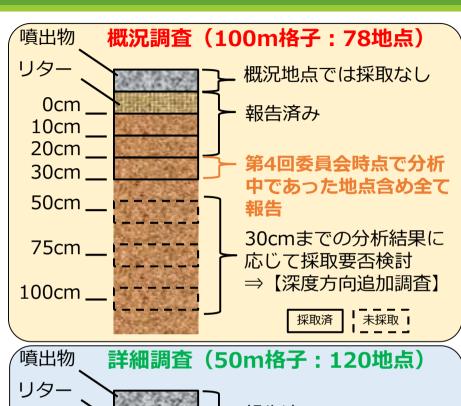
※土壌汚染対策法の土壌含有量基準あるいは土壌溶出量基準

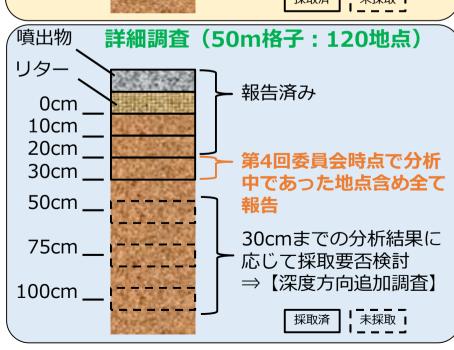

▶ 今後の調査方針 [p.38-40参照]

✓ 深度方向追加調査

試験フロー【p.10】に基づき、土壌深度20-30cmで基準超過となった5地点(右図)にて深度100cmまでの追加試料採取を実施し、重金属等の移行状況を確認する


✓ 流路沿いの調査


噴出期に基地から噴出物を含んだ白濁水が流出しており、この流路についても追加で土壌 調査を実施する



ロ 試験方法と試験フロー

- > 溶出量試験
 - ⇒ 自然由来重金属等8項目※とpH
- > 全含有量試験
 - ⇒ 自然由来重金属等8項目※
- ※ 砒素・ほう素・ふっ素・水銀・鉛・カドミウム・セレン・六価クロム

ロ 砒素分析結果:リター

<全含有量>

- ▶ 評価基準※1
- ✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (150 mg/kg以下)を参考値※2として比較した
- > 評価結果
- ✓ 6地点で評価基準超過が認められた
- ✓ 噴出井戸から連続する明瞭な濃度減衰が認められた

北側 28 6.0 7.7 3.8 26 2.6 5.9 24 7.6 7.2 4.9 4.0 7.5 22 10 2.2 11 21 19 12 10 9.5 15 18 9.0 12 5.3 20 16 14 17 12 11 4.6 19 19 18 21 13 18 21 10 19 18 9.8 20 29 30 22 26 16 8.3 8 6.8 3.2 17 8.1 14 38 26 46 42 35 16 28 64 40 32 33 10 13 3.2 3.5 15 17 28 57 76 46 42 30 12 10 14 24 28 390 160 110 35 13 10 7.3 7.2 20 58 13 310 1300 200 凡例 井戸 39 12 33 370 58 36 66 15 10 6.0 7.4 2.1 7.0 11 26 81 35 21 18 12 1500 10 6.5 10 21 48 31 8.8 9.1 16 2.4 5.7 5.0 900 09 14 20 9.5 16 151 2.5 7.4 14 18 11 6.7 7.4 7.7 16 3.2 150 3.0 2.6 7.9 19 7.5 6.0 4.4 4.2 100 07 4.1 3.9 7.5 7.5 50 06 2.9 10 7.5 4.7 4.7 2.9 1.8 3.1 4.0 6.5 9.7 6.4 7.3 4.7 30 05 04 9.6 3.9 3.6 4.6 4.0 5.2 4.6 7.2 10 03 2.7 5.3 6.7 5 6.1 02 4.7 3.5 1 00 1.4 2.4 00 01 02 04 05 06 07 08 09 10 12

_____ リター全含有量 [mg/kg]

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

く溶出量>

▶ 評価基準※1

✓ リターには一般的な基準はなく、試験方法も異なることから土壌 溶出量基準を参照できないため、評価基準は設定しない

> 評価結果

- ✓ 噴出井戸から連続する明瞭な濃度減衰が認められた
- ✓ 噴出井戸の北東側近傍で局所的に低い濃度を示した

						北側						コ・#	凡例	」 通目安
28							0.48							傍範囲
26	0.17		0.44		0.26		0.35		0.20					:戸基地
24	0.28		0.87		0.24		0.53		0.22					
22	0.39		0.61		0.80		0.42		0.05			:	三只是	超過
21		1.3	1.4	1.0	0.85	1.1	0.78	0.66						
20	0.58	0.70	2.1	0.82	0.83	1.3	0.95	0.30	0.32		0.19			
19	0.70	1.6	1.0	1.6	1.2	1.6	1.5	0.89	0.57	0.24				
18	0.79	1.1	2.0	3.5	3.2	2.9	2.9	1.3	0.72	0.42	0.12	0.05		
17	0.17	1.3	1.4	3.1	3.9	3.9	1.9	1.7	1.2	0.57				
16	0.39	1.4	3.3	2.4	8.9	4.9	3.3	4.8	2.4	0.69	0.28	0.10		
15		1.0	2.7	6.7	11	3.8	5.8	3.6	1.2	0.54				
14		1.0	2.9	14	0.58	0.33	2.2	3.7	1.6	0.44	0.48	0.24		
13		1.9	7.8	35	0.56	0.27	1.3	2.5	2.1	0.42				C7 /Fil
12		6.0	3.9	22	井戸	9.5	5.5	12	1.2	0.40	0.24	0.22	0.19	凡例
11		0.25	3.5	12		5.6	2.7	1.9	1.5					50
10	0.49	0.71	2.5	6.9	基地	3.9	0.66	0.37	0.69		0.15	0.11	0.08	40
09	0.13	0.74	2.4	2.9	1.5	0.39	1.0	0.25	0.28					30
08	0.21	0.56	1.0	1.5	1.8	0.46	0.24	0.15	0.18		0.17	0.13		20
07	0.17	0.23	0.86	2.7	0.76	0.50	0.34	0.12	0.26					10
06	0.33	0.25	0.46	0.99	0.34	0.39	0.40	0.20	0.20		0.10			5.0
05	0.34	0.18	0.31	0.34	0.33	0.19	0.11							3.0
04	0.30	0.26	0.28	0.16	1.5	0.23	0.14		0.07					1.0
03	0.04	0.02	0.09	0.19										0.5
02			0.10		0.20		0.19							0.3
00			0.07		0.09									
y x	00	01	02	03	04	05	06	07	08	09	10	12	14	

リター溶出量[※] [mg/kg]

砒素分析結果:土壌0-10 cm *

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

<全含有量>

▶ 評価基準※1

✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (150 mg/kg以下)を参考値※2として比較した

> 評価結果

- ✓ 8地点で評価基準超過が認められた
- ✓ 噴出井戸から連続する明瞭な濃度減衰が認められた

∃レ/⊞I

<溶出量> ▶ 評価基準※1

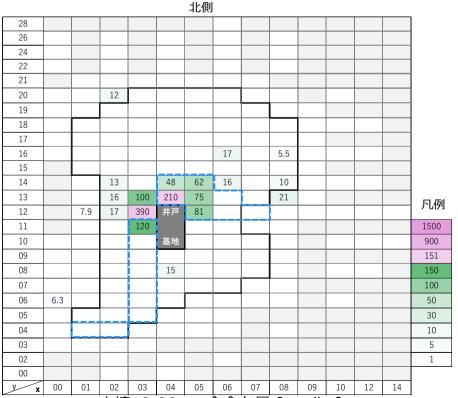
- ✓ 土壌汚染対策法の土壌溶出量基準 (0.01 mg/L以下) と比較した
- > 評価結果
- ✓ 39地点で評価基準超過が認められた
- ✓ 噴出井戸近傍で相対的に相対的に高い濃度を示したことから、噴 出による影響が示唆される

						北侧									
28							8.5								
26	13		5.0		23		18		19						
24	16		20		17		19		12						
22	17		11		15		18		12						
21		15	16	16	13	18	19	13							
20	21	21	16	21	18	17	24	17	6.4		5.3				
19	21	21	18	16	19	20	17	16	15	14					
18	19	17	27	28	36	20	25	17	12	16	15	9.4			
17	21	15	25	35	11	24	25	21	20	17					
16	17	29	21	27	36	64	47	20	9.4	20	10	10			
15		17	33	110	120	78	19	26	28	18					
14		32	51	110	330	170	52	32	30	18	10	15			
13		23	47	230	840	360	56	27	19	11				[] /Fil	
12		12	23	440	井戸	160	39	15	17	17	15	15	11	凡例	
11		16	17	190		41	20	13	13					1500	
10	15	18	25	88	基地	17	15	21	14		37	27	7.5	900	
09	14	21	19	17	23	19	19	18	13					151	
08	13	12	13	18	10	18	17	12	17		50	12		150	
07	15	23	19	8.0	7.0	14	17	19	14					100	
06	11	15	16	15	15	8.6	23	16	18		18			50	Ì
05	29	15	15	14	14	16	22							30	Ì
04	43	13	29	11	12	13	16		19					10	Ì
03	16	16	10	14										5	Ì
02			9.4		19		12							1	Ì
00			9.8		10										
у х	00	01	02	03	04	05	06	07	08	09	10	12	14		

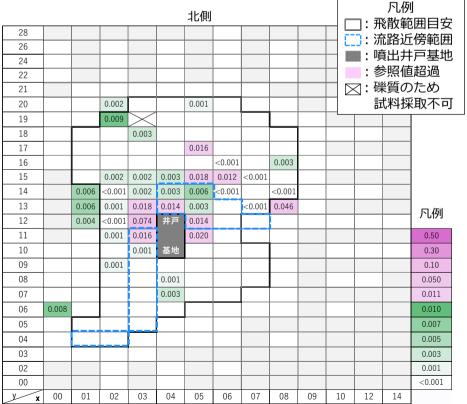
土壌0-10 cm全含有量 [mg/kg]

28 26 24 22	<0.001 <0.001		0.001 0.001 <0.001		0.001 <0.001 <0.001	北側	<0.001 0.001 0.001		0.002 0.001 0.001			 : 济 ■: 嗳	路近 到出井	
21	0.001	0.005	0.002	0.001	0.006	0.003	0.001	0.001	0.001		H		//// II	
20	0.001	0.001	0.059	0.001	0.001	0.011	0.002	0.002	<0.001		0.004			
19	0.001	0.002	0.049	0.013	<0.001	0.005	0.001	0.003	0.001	0.003				
18	0.002	0.001	0.007	0.014	0.004	0.008	0.001	0.002	0.001	0.001	0.001	0.001		
17	0.001	0.007	0.004	0.008	<0.001	0.091	< 0.001	<0.001	0.001	0.001				
16	0.001	0.008	0.008	0.003	< 0.001	0.008	0.014	0.001	0.025	0.001	0.002	<0.001		
15		0.006	0.016	0.049	0.14	0.039	0.089	0.018	0.005	0.002				
14		0.017	0.029	0.20	0.22	0.12	0.012	0.003	0.012	0.001	0.004	0.002		
13		0.017	0.046	0.48	0.21	0.21	0.008	0.011	0.032	0.006				
12		0.014	0.008	0.32	井戸	0.060	0.002	0.002	0.002	< 0.001	0.001	0.003	0.001	凡例
11		0.007	0.012	0.067		0.11	0.003	0.002	0.004					0.50
10	0.007	0.003	0.006	0.029	基地	0.003	0.002	0.001	0.001		0.003	0.002	0.001	0.30
09	0.006	0.006	0.011	0.001	0.007	0.001	0.002	0.001	< 0.001					0.10
08	< 0.001	0.005	0.007	0.006	0.020	0.001	0.001	<0.001	0.001		0.001	0.001		0.050
07	0.001	0.005	0.006	0.001	0.017	0.002	0.002	0.001	0.003					0.011
06	0.011	0.002	0.002	0.007	0.001	0.001	0.002	0.003	< 0.001		<0.001			0.010
05	0.001	0.002	0.002	0.001	0.002	0.002	0.001							0.007
04	<0.001	0.004	0.003	0.004	0.001	0.001	< 0.001		0.001					0.005
03	< 0.001	< 0.001	0.003	0.001										0.003
02			0.005		0.001		< 0.001							0.001
00			0.004		0.001									< 0.001
у <u>х</u>	00	01	02	03	04	05	06	07	08	09	10	12	14	0.000

土壌0-10 cm溶出量 [mg/L]


量試験の測定結果より大きくなることが一般

<全含有量>


- ▶ 評価基準※1
- ✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (150 mg/kg以下) を参考値*2として比較した
- > 評価結果
- ✓ 2地点で評価基準超過が認められた
- ✓ 噴出井戸の近傍で高い濃度を示した

<溶出量>

- ▶ 評価基準※1
- ✓ 土壌汚染対策法の土壌溶出量基準 (0.01 mg/L以下) と比較した
- > 評価結果
- ✓ 10地点で評価基準超過が認められ、噴出井戸の近傍、井戸の北東 側周辺、井戸から離れた東側(08-13地点)に分布していた

土壌10-20 cm全含有量 [mg/kg]

土壌10-20 cm溶出量 [mg/L]

14

量試験の測定結果より大きくなることが一般

凡例 □:飛散節囲目安

: 流路近傍節囲

■:噴出井戸基地

試料採取不可

凡例

0.50

0.30

0.10

0.050

0.011

0.010

0.007

0.005

0.003

0.001

< 0.001

:参照值超過

☆: 礫質のため

<全含有量>

▶ 評価基準※1

✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (150 mg/kg以下)を参考値※2として比較した

> 評価結果

- ✓ 1地点で評価基準超過が認めら、噴出井戸西側に分布していた
- ✓ 鉛直下方への移行が認められるため、調査フロー (p.10) に基 づき追加試料採取を実施する

<溶出量>

▶ 評価基準※1

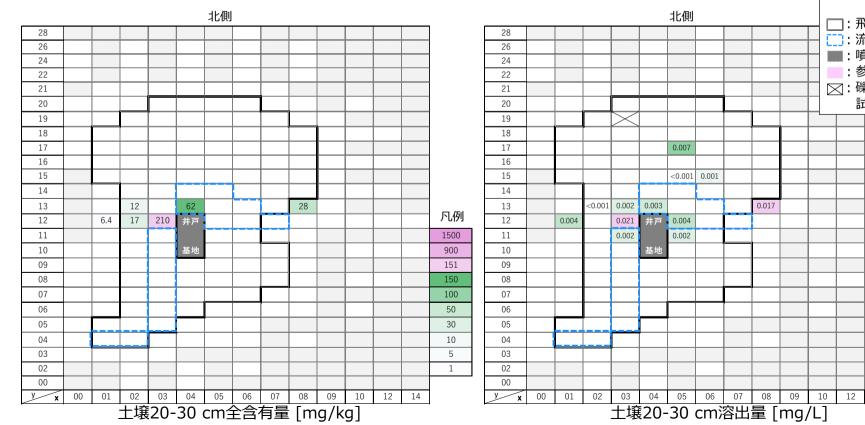
✓ 土壌汚染対策法の土壌溶出量基準 (0.01 mg/L以下) と比較した

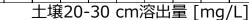
> 評価結果

- ✓ 2地点で評価基準超過が認められ、噴出井戸西側近傍、井戸から 離れた東側(08-13地点)に分布していた
- ✓ 鉛直下方への移行が認められるため、調査フロー (p.10) に基づ き追加試料採取を実施する

<0.001 0.001

0.002


0.017


<0.001 0.002 0.003

0.002

0.004

0.021 井戸 0.004

ロ ほう素分析結果:リター

<全含有量>

- ▶ 評価基準※1
- ✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (4000 mg/kg以下)を参考値※2として比較した
- > 評価結果
- ✓ 評価基準を超過する地点は認められなかった
- ✓ 噴出井戸から連続する濃度減衰は不明瞭であった

北側 28 13 7.7 10 10 7.3 26 3.0 24 6.7 7.3 6.8 13 9.3 4.9 13 6.0 22 13 8.9 21 16 11 4.3 12 9.1 12 16 17 9.5 38 10 20 11 12 10 14 6.6 18 19 16 2.8 8.8 9.8 13 14 15 13 17 18 15 11 14 15 11 7.3 8.1 7.4 5.1 21 17 15 15 18 13 23 16 16 14 15 11 18 7.7 4.0 15 11 16 16 15 12 15 8.2 10 20 14 7.6 7.8 4.7 4.4 8.6 16 23 13 8.1 11 5.5 6.8 12 13 凡例 11 12 8.5 6.8 20 12 8.5 9.8 11 6.7 8.3 6.8 11 17 8.6 11 10 15 7.6 12 4000超過 10 1.2 14 9.3 13 15 13 3.9 7.9 7.6 5.4 5.1 50 19 18 16 13 40 3.7 14 16 13 6.0 14 11 13 10 6.9 30 1.6 16 19 11 14 13 14 12 16 20 07 6.6 5.9 11 5.7 15 10 06 0.9 11 11 9.8 1.9 6.0 15 16 12 17 12 13 5 05 12 15 04 8.1 12 10 9.1 7.1 8.8 1 03 15 12 12 15 02 9.1 6.9 00 6.6 8.0 00 01 02 04 05 06 07 08 09 10 12

_____ リター全含有量 [mg/kg]

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

く溶出量>

▶ 評価基準※1

✓ リターには一般的な基準はなく、試験方法も異なることから土壌 溶出量基準を参照できないため、評価基準は設定しない

> 評価結果

- ✓ 噴出井戸の北側6地点でのみ検出されるが基準値未満であった
- ✓ 噴出井戸から連続した濃度分布は認められなかった

						北側						□:∄	凡例	川 西目安
28							<2							傍範囲
26	<2		<2		<2		<2		<2					戸基地
24	<2		<2		<2		<2		<2					_
22	<2		<2		<2		<2		<2			:	三只是	超過
21		<2	<2	<2	<2	<2	<2	<2						
20	<2	<2	<2	<2	<2	<2	<2	<2	<2		<2			
19	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2				
18	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2		
17	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2				
16	<2	<2	<2	<2	2.0	<2	<2	<2	<2	<2	<2	<2		
15		<2	<2	<2	2.0	<2	2.0	<2	<2	<2				
14		<2	<2	3.0	<2	<2	<2	<2	<2	<2	<2	<2		
13		<2	3.0	<2	<2	<2	<2	<2	<2	<2				[5] <i>[</i> 5]
12		<2	<2	<2	井戸	2.0	<2	<2	<2	<2	<2	<2	<2	凡例
11		<2	<2	<2		<2	<2	<2	<2					5.0
10	<2	<2	<2	<2	基地	<2	<2	<2	<2		<2	<2	<2	4.0
09	<2	<2	<2	<2	<2	<2	<2	<2	<2					3.0
08	<2	<2	<2	<2	<2	<2	<2	<2	<2		<2	<2		2.0
07	<2	<2	<2	<2	<2	<2	<2	<2	<2					<2
06	<2	<2	<2	<2	<2	<2	<2	<2	<2		<2			1.0
05	<2	<2	<2	<2	<2	<2	<2							
04	<2	<2	<2	<2	<2	<2	<2		<2					
03	<2	<2	<2	<2										
02			<2		<2		<2							
00			<2		<2									
у <u>х</u>	00	01	02	03	04	05	06	07	08	09	10	12	14	

リター溶出量[※] [mg/kg]

※リター試料の乾燥重量当たりの含有量として算出しているため次項以降の土壌溶出量とは直接比較できない点に留意

ロ ほう素分析結果: ±壌0-10 cm

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

<全含有量>

▶ 評価基準※1

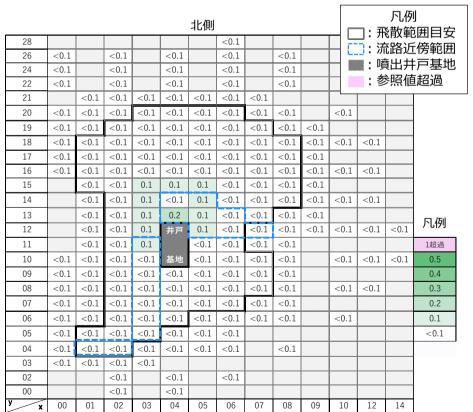
✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (4000 mg/kg以下) を参考値^{×2}として比較した

北側

> 評価結果

- ✓ 評価基準を超過する地点は認められなかった
- ✓ 噴出井戸近傍にて相対的に高い濃度を示すが、連続する濃度減 衰は不明瞭であった

<溶出量>


- ▶ 評価基準※1
- ✓ 土壌汚染対策法の土壌溶出量基準(1 mg/L以下)と比較した

> 評価結果

- ✓ 評価基準を超過する地点は認められなかった
- ✓ 噴出井戸の周囲でのみ検出され、その外側では不検出であった

								コロはご						
							11							28
					16		17		19		11		13	26
					16		19		20		19		22	24
					13		23		19		12		19	22
						11	16	20	13	15	14	17		21
			8.1		12	16	18	12	21	23	7.2	22	24	20
				15	18	14	13	9.3	11	11	8.1	16	17	19
		16	19	17	11	13	22	14	19	19	16	18	17	18
				13	22	28	23	24	21	15	11	18	14	17
		19	16	22	5.7	26	24	12	18	20	19	15	13	16
				20	17	13	7.7	30	22	19	16	13		15
		16	16	17	18	15	21	28	32	25	19	14		14
[7] <i>[F</i> []				7.3	9.8	14	19	26	36	24	14	12		13
凡例	15	21	15	12	16	19	17	25	井戸	29	26	9.7		12
4000超過					10	10	15	13		20	17	9.9		11
50	11	18	12		12	19	14	14	基地	21	14	18	10	10
40					18	22	14	16	15	20	10	13	10	09
30		13	38		21	16	21	18	6.1	14	7.2	7.5	22	08
20					15	24	18	16	5.3	8.9	13	12	13	07
10			10		16	25	19	13	16	12	15	13	22	06
5							17	17	17	15	16	13	14	05
1					19		19	19	16	8.5	11	13	17	04
										11	9.7	9.9	16	03
							20		19		9.2			02
									14		4.4			00
	14	12	10	09	08	07	06	05	04	03	02	01	00	у х
				· · · ·			$\overline{}$	$\overline{}$						

土壌0-10 cm全含有量 [mg/kg]

土壌0-10 cm溶出量 [mg/L]

ロ ほう素分析結果:土壌10-20 cm 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有

量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

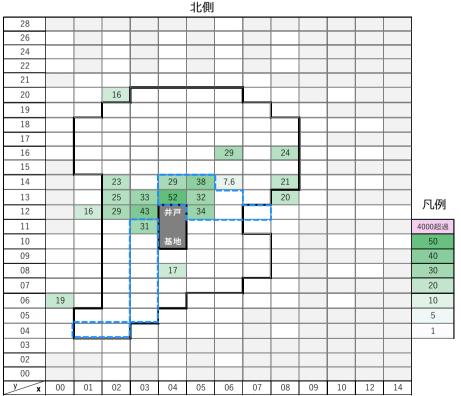
<全含有量>

▶ 評価基準※1

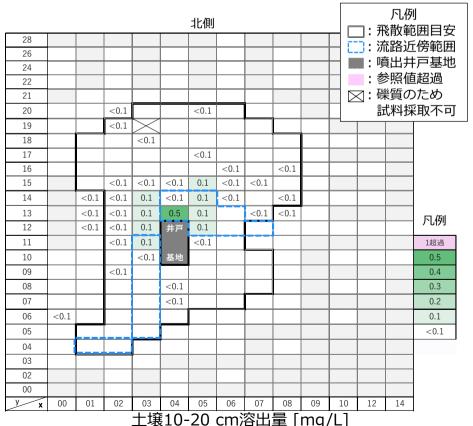
✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (4000 mg/kg以下)を参考値※2として比較した

> 評価結果

- ✓ 評価基準を超過する地点は認められなかった
- ✓ 噴出井戸近傍にて相対的に高い濃度を示す


<溶出量>

▶ 評価基準※1


✓ 土壌汚染対策法の土壌溶出量基準 (1 mg/L以下) と比較した

> 評価結果

- ✓ 評価基準を超過する地点は認められなかった
- ✓ 噴出井戸の周囲でのみ検出され、その外側では不検出であった

ロ ほう素分析結果: 土壌20-30 cm 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有

量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

凡例

: 飛散節囲目安

: 流路近傍節囲

■:噴出井戸基地

<全含有量>

▶ 評価基準※1

✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (4000 mg/kg以下)を参考値※2として比較した

> 評価結果

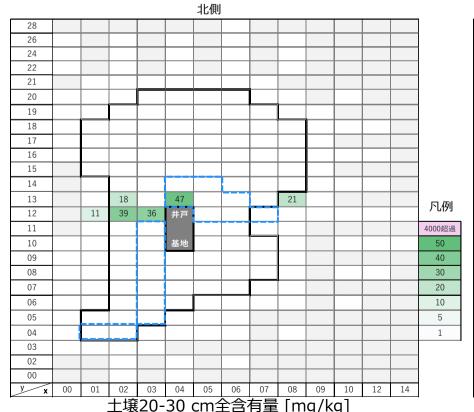
- ✓ 評価基準を超過する地点は認められなかった
- ✓ 噴出井戸近傍にて相対的に高い濃度を示した

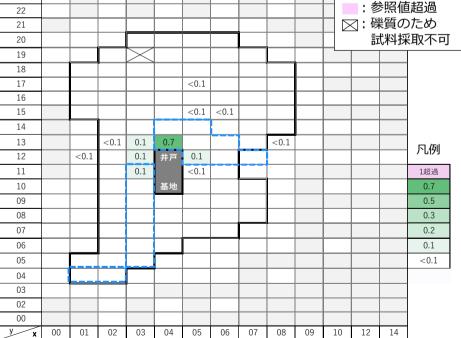
<溶出量>

▶ 評価基準※1

✓ 土壌汚染対策法の土壌溶出量基準 (1 mg/L以下) と比較した

> 評価結果


28


26

24

- ✓ 評価基準を超過する地点は認められなかった
- ✓ 噴出井戸の周囲でのみ検出され、その外側では不検出であった

北側

土壌20-30 cm溶出量 [mg/L]

ロ ふつ素分析結果:リター

<全含有量>

- ▶ 評価基準※1
- ✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (4000 mg/kg以下)を参考値※2として比較した
- > 評価結果
- ✓ 評価基準を超過する地点は認められなかった
- ✓ 噴出井戸近傍において相対的に高い濃度が示されており、井戸 から連続するやや不明瞭な濃度減衰が認められた

								北側						
							15							28
					7.2		1.6		3.9		12		2.6	26
					8.3		4.4		0.6		2.1		15	24
					30		8.1		11		15		11	22
						12	4.5	16	1.3	2.2	2.9	4.0		21
			1.6		7.1	10	4.2	10	6.2	4.4	3.7	12	4.2	20
				11	13	4.3	3.3	6.2	2.4	6.1	4.4	2.8	3.7	19
1		6.9	13	4.8	11	16	6.0	12	4.3	1.6	1.9	1.7	1.6	18
1				4.2	9.2	25	35	25	4.6	3.1	3.4	3.6	1.9	17
		7.0	2.3	4.5	2.8	26	17	26	29	7.4	3.3	5.8	1.3	16
1				3.0	4.4	8.9	17	42	23	16	1.5	1.7		15
		21	10	1.4	6.9	22	27	40	45	17	2.5	2.1		14
				1.6	3.8	10	24	63	41	18	2.7	1.9		13
凡例	2.4	9.6	13	17	7.8	18	14	19	井戸	36	15	1.9		12
4000超過					1.1	0.9	3.1	5.3]	32	3.2	2.1		11
200	7.1	7.6	2.0		25	2.1	3.4	5.0	基地	26	4.3	3.4	0.6	10
170					1.4	3.6	4.3	1.6	2.0	8.7	2.5	1.4	4.2	09
150		4.2	22		9.9	7.2	10	1.9	3.6	4.9	3.0	1.2	1.4	08
130					4.8	2.8	1.6	1.2	1.6	1.4	2.6	1.7	2.7	07
110			0.8		3.5	5.1	3.7	3.7	19	2.5	2.2	1.5	1.5	06
90							4.1	13	1.9	2.4	1.6	1.7	1.9	05
70					24		22	2.6	2.7	4.6	1.7	2.8	5.8	04
50										13	7.7	26	10	03
30							3.7		6.9		4.6			02
10									14		3.0			00
	14	12	10	09	08	07	06	05	04	03	02	01	00	у х
-														

リター全含有量 [mg/kg]

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

<溶出量>

▶ 評価基準※1

✓ リターには一般的な基準はなく、試験方法も異なることから土壌 溶出量基準を参照できないため、評価基準は設定しない

> 評価結果

✓ 飛散範囲目安の外側でのみ検出されており、井戸から連続する濃 度分布は認められない

						北側						つ: 邪	凡例	 囲目安
28							<2							傍範囲
26	<2		<2		<2		<2		<2					戸基地
24	<2		<2		<2		<2		<2					超過
22	<2		<2		<2		<2		<2			: 参	北京	地吧
21		<2	<2	<2	<2	2.0	<2	<2						
20	<2	<2	<2	<2	<2	<2	<2	<2	<2		<2			
19	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2				
18	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2		
17	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2				
16	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2		
15		<2	<2	<2	<2	<2	<2	<2	<2	<2				
14		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2		
13		<2	<2	<2	<2	<2	<2	<2	<2	<2				57 /Bil
12		<2	<2	<2	井戸	<2	<2	<2	<2	<2	<2	<2	<2	凡例
11		<2	<2	<2		<2	<2	<2	<2					5.0
10	<2	<2	<2	<2	基地	<2	<2	<2	<2		<2	<2	<2	4.0
09	2.2	<2	<2	<2	<2	<2	<2	<2	<2					3.0
08	<2	<2	<2	<2	<2	<2	<2	<2	<2		<2	<2		2.0
07	<2	<2	<2	<2	<2	<2	<2	<2	<2					<2
06	<2	<2	<2	<2	<2	<2	<2	<2	<2		<2			0.0
05	<2	<2	<2	<2	<2	<2	<2							
04	<2	<2	<2	2.7	<2	<2	<2		<2					
03	<2	<2	<2	<2										
02			<2		<2		<2							
00			<2		<2									
Ух	00	01	02	03	04	05	06	07	08	09	10	12	14	

リター溶出量[※] [mg/kg]

ロ ふつ素分析結果: 土壌0-10 cm

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

<全含有量>

▶ 評価基準※1

✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (4000 mg/kg以下)を参考値^{※2}として比較した

∃レ/⊞I

> 評価結果

- ✓ 評価基準を超過する地点は認められなかった
- ✓ 全域的に同程度の濃度で分布しており、噴出井戸から連続する 濃度減衰は不明瞭であった

<溶出量>

- ▶ 評価基準※1
- ✓ 土壌汚染対策法の土壌溶出量基準(0.8 mg/L以下)と比較した

> 評価結果

✓ 全地点で定量下限値未満であり、評価基準を超過する地点は認め られなかった

						北侧								_
28							110							
26	100		84		130		110		94					
24	150		100		140		130		95					
22	120		120		200		140		88					
21		84	80	130	61	79	64	72						
20	130	130	34	120	160	69	93	76	51		28			
19	120	94	32	42	110	79	72	60	73	62				
18	100	120	88	140	130	70	110	100	140	81	100	92		
17	120	71	87	80	140	52	140	150	120	63				
16	72	50	68	110	190	120	100	90	17	110	83	75		
15		51	54	59	82	100	15	50	61	110				
14		42	89	89	150	78	130	73	90	87	65	99		
13		50	46	81	160	100	65	44	17	11				[[[] [] []
12		30	71	140	井戸	130	100	59	75	61	70	98	73	凡例
11		36	81	120		44	70	42	20					4000超過
10	27	71	110	110	基地	58	87	120	98		54	91	49	200
09	42	89	50	100	52	72	66	96	60					170
08	53	51	60	96	31	110	120	70	130		54	67		150
07	71	56	83	64	110	91	77	120	57					130
06	71	87	120	50	110	83	110	90	71		63			110
05	71	81	120	130	79	66	93							90
04	130	71	56	58	80	100	130		100					70
03	89	94	52	84										50
02			52		140		100							30
00			72		120									10
у х	00	01	02	03	04	05	06	07	08	09	10	12	14	
-	•		ㅗ ֈ厺		_	\triangle	~ -		_	/1	_			•

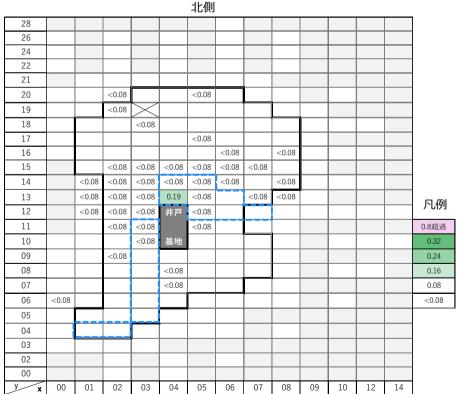
土壌0-10 cm全含有量 [mg/kg]

28 26 24	<0.08		<0.08		<0.08	北側	<0.08 <0.08		<0.08]: 济	路近] 四目安 傍範囲 :戸基地
22	<0.08		<0.08		<0.08		<0.08		<0.08					超過
21		<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08						
20	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08		<0.08			
19	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08				
18	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08		
17	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08				
16	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08		
15		<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08				
14		<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08		
13		<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	< 0.08	<0.08				□ /5il
12		<0.08	<0.08	<0.08	井戸	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	凡例
11		<0.08	<0.08	<0.08		<0.08	<0.08	<0.08	<0.08					0.8超過
10	<0.08	<0.08	<0.08	<0.08	基地	< 0.08	<0.08	<0.08	< 0.08		<0.08	<0.08	<0.08	0.32
09	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08					0.24
80	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	< 0.08		<0.08	<0.08		0.16
07	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08					0.08
06	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08		<0.08			<0.08
05	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08							
04	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08		<0.08					
03	<0.08	<0.08	<0.08	<0.08										
02			<0.08		<0.08		<0.08							
00			<0.08		<0.08									
yx	00	01	02	03	04	05	06	07	08	09	10	12	14	

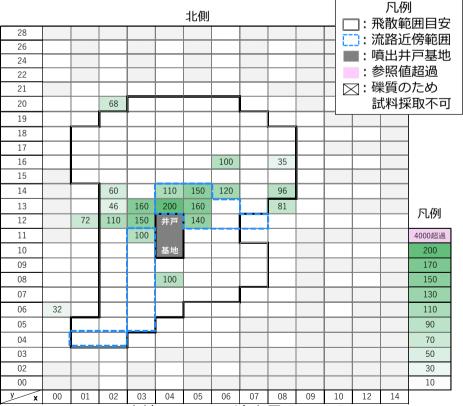
土壌0-10 cm溶出量 [mg/L]

ロ ふっ素分析結果: 土壌10-20 cm 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有


量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

<全含有量>


- ▶ 評価基準※1
- ✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (4000 mg/kg以下)を参考値※2として比較した
- > 評価結果
- ✓ 評価基準を超過する地点は認められなかった
- ✓ 噴出井戸近傍にて相対的に高い濃度を示した

<溶出量>

- ▶ 評価基準※1
- ✓ 土壌汚染対策法の土壌溶出量基準 (0.8 mg/L以下) と比較した
- > 評価結果
- ✓ 評価基準を超過する地点は認められなかった
- ✓ 噴出井戸の北側1地点(04-13地点)でのみ検出された

土壌10-20 cm溶出量 [mg/L]

ロ ふっ素分析結果: 土壌20-30 cm 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有

量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

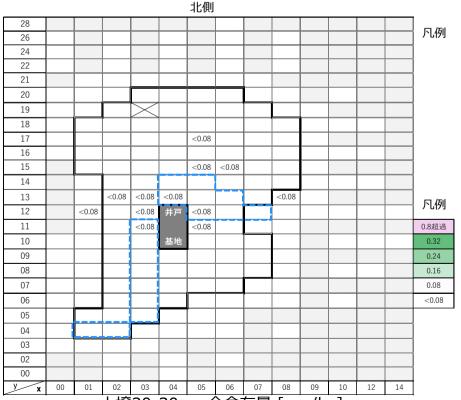
<全含有量>

▶ 評価基準※1

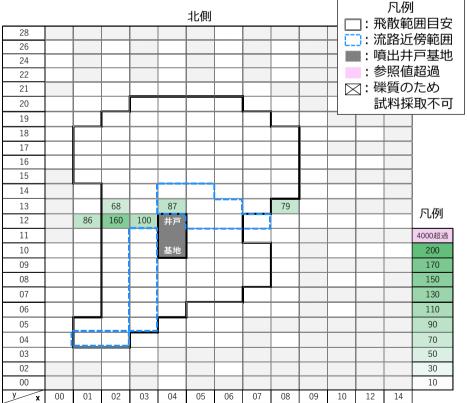
✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (4000 mg/kg以下)を参考値※2として比較した

> 評価結果

- ✓ 評価基準を超過する地点は認められなかった
- ✓ 噴出井戸から連続する明瞭な濃度減衰は認められない


<溶出量>

▶ 評価基準※1


✓ 土壌汚染対策法の土壌溶出量基準 (0.8 mg/L以下) と比較した

> 評価結果

✓ 全地点で定量下限値未満であり、評価基準を超過する地点は認め られなかった

土壌20-30 cm溶出量 [mg/L]

ロ 水銀分析結果:リター

<全含有量>

- ▶ 評価基準※1
- ✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (15 mg/kg以下) を参考値*2として比較した
- > 評価結果
- ✓ 評価基準を超過する地点は認められなかった
- ✓ 噴出井戸から離れた西側に相対的に高い濃度が認められた

1ト4II

超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

<溶出量>

▶ 評価基準※1

✓ リターには一般的な基準はなく、試験方法も異なることから土壌 溶出量基準を参照できないため、評価基準は設定しない

> 評価結果

✓ 噴出井戸から離れた西側の1地点(02-13地点)でのみ検出され。 た

					기나기								
						0.05							Ĭ
0.04		0.05		0.05		0.05		0.01					Ĭ
0.06		0.03		0.03		0.05		0.05					i
0.06		0.01		0.02		0.08		0.01					i
	0.04	0.05	0.05	0.04	0.08	0.03	0.04						Ĭ
0.05	0.03	0.04	0.04	0.04	0.08	0.05	0.08	0.02		0.06			Ĭ
0.05	0.04	0.03	0.05	0.03	0.08	0.07	0.07	0.01	0.08				Ĭ
0.05	0.04	0.05	0.04	0.05	0.06	0.05	0.05	0.03	0.05	0.02	0.05		Ĭ
0.04	0.06	0.05	0.06	0.11	0.11	0.06	0.09	0.07	0.04				Ĭ
0.09	0.01	0.09	0.08	0.10	0.15	0.01	0.11	0.07	0.05	0.07	0.03		Ĭ
	0.20	0.06	0.63	0.16	0.14	0.14	0.11	0.08	0.06				Ĭ
	0.05	0.06	0.18	0.25	0.25	0.28	0.17	0.07	0.04	0.04	0.01		Ĭ
	0.08	0.75	0.02	0.24	0.36	0.27	0.11	0.05	0.05				
	0.07	1.8	0.01	井戸	0.11	0.04	0.13	0.04	0.03	0.01	0.01	0.04	凡例
	0.06	0.12	0.03		0.06	0.06	0.06	0.04					2.0
0.06	0.08	0.08	0.02	基地	0.07	0.06	0.06	0.02		0.03	0.01	0.02	1.5
0.07	0.05	0.06	0.07	0.05	0.05	0.07	0.07	0.08					1.0
0.11	0.03	0.02	0.04	0.04	0.07	0.06	0.06	0.04		0.10	0.02		0.5
0.03	0.03	0.04	0.04	0.03	0.04	0.06	0.06	0.05					0.3
0.04	0.05	0.06	0.04	0.04	0.05	0.05	0.07	0.04		0.04			0.1
0.03	0.04	0.04	0.04	0.04	0.06	0.06							0.05
0.06	0.26	0.02	0.03	0.05	0.05	0.04		0.07					0.03
0.02	0.02	0.06	< 0.01										< 0.01
		< 0.01		0.05		0.05							
		0.03		0.03									ı
00	01	02	03	04	05	06	07	08	09	10	12	14	ì
	0.06 0.05 0.05 0.05 0.04 0.09 0.06 0.07 0.11 0.03 0.04 0.03	0.06 0.04 0.05 0.04 0.05 0.04 0.05 0.07 0.07 0.06 0.08 0.07 0.05 0.03 0.03 0.03 0.04 0.05 0.03 0.04 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.05 0.02 0.02 0.02 0.02 0.02 0.04 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.05 0.02 0.	0.06 0.03 0.06 0.01 0.05 0.03 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.06 0.05 0.09 0.01 0.09 0.05 0.06 0.05 0.07 1.8 0.06 0.02 0.08 0.07 0.05 0.06 0.11 0.03 0.02 0.03 0.03 0.04 0.04 0.05 0.06 0.03 0.03 0.04 0.04 0.05 0.06 0.03 0.04 0.04 0.06 0.26 0.02 0.02 0.06 0.01 0.00 0.01 0.06	0.06 0.03 0.01 0.06 0.01 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.06 0.04 0.06 0.05 0.06 0.09 0.01 0.09 0.08 0.05 0.06 0.18 0.08 0.75 0.02 0.07 1.8 0.01 0.06 0.01 0.03 0.07 0.06 0.07 0.11 0.03 0.02 0.04 0.03 0.03 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.05 0.06 0.01 0.03 0.04 0.04 0.04 0.04 0.05 0.06 0.01 0.03 0.04 0.04 0.04 0.05 0.06 0.01 </td <td> 0.06</td> <td> 1</td> <td> 0.04</td> <td> 1</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> 0.04</td>	0.06	1	0.04	1					0.04

リター全含有量 [mg/kg]

						北側						□・#	凡例 数数额	川 西目安
28							<0.01							傍範囲
26	<0.01		<0.01		<0.01		<0.01		<0.01					戸基地
24	< 0.01		<0.01		<0.01		<0.01		< 0.01					
22	<0.01		<0.01		<0.01		<0.01		< 0.01			: 多	宗照他	超過
21		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01						
20	< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01		<0.01			
19	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01				
18	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01		
17	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01				
16	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01		
15		< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01				
14		<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01		
13		<0.01	0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01				
12		<0.01	< 0.01	< 0.01	井戸	<0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	凡例
11		<0.01	<0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01					0.03
10	<0.01	<0.01	< 0.01	< 0.01	基地	< 0.01	<0.01	<0.01	< 0.01		<0.01	<0.01	<0.01	0.02
09	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01					0.01
08	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01		<0.01	<0.01		< 0.01
07	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01					0.0
06	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01		< 0.01			
05	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01							
04	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01		<0.01					
03	<0.01	<0.01	<0.01	< 0.01										
02			<0.01		<0.01		<0.01							
00			<0.01		<0.01									
у х	00	01	02	03	04	05	06	07	08	09	10	12	14	

リター溶出量* [mg/kg]

□ 水銀分析結果:土壌0-10 cm

※1:試験方法等が異なることから、評価基準の 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

※2:試験方法より、全含有量試験の結果は含有量試験の測定結果より大きくなることが一般的であるため参照可能と考えた

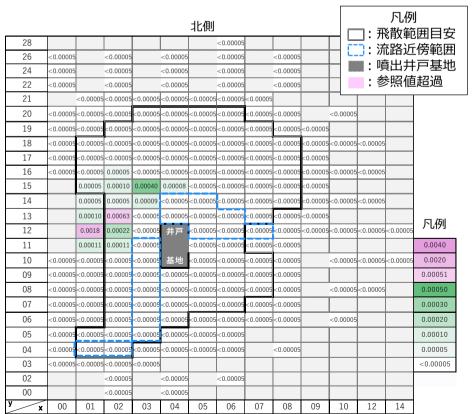
<全含有量>

▶ 評価基準※1

✓ 試験方法は異なるが、土壌汚染対策法の土壌含有量基準 (15 mg/kg以下)を参考値※2として比較した

> 評価結果

- ✓ 3地点で評価基準超過が認められた
- ✓ 噴出井戸から離れた西側(01-12地点)を中心とした分布で あった


北側

<溶出量>

- ▶ 評価基準※1
- ✓ 土壌汚染対策法の土壌溶出量基準 (0.0005 mg/L以下) と比較した
- > 評価結果
- ✓ 2地点で評価基準超過が認められた
- ✓ 噴出井戸から離れた西側(01-12地点)を中心とした分布であった

								-101/3						
							0.05							28
					0.17		0.16		0.14		0.01		0.14	26
					0.15		0.16		0.14		0.11		0.12	24
					0.08		0.14		0.07		0.06		0.14	22
						0.11	0.19	0.19	0.20	0.20	0.19	0.15		21
			0.15		0.09	0.21	0.18	0.22	0.10	0.19	0.08	0.24	0.33	20
				0.13	0.18	0.22	0.27	0.20	0.12	0.18	0.15	0.15	0.32	19
		0.14	0.16	0.12	0.05	0.09	0.13	0.19	0.16	0.21	0.11	0.21	0.15	18
				0.14	0.16	0.13	0.17	0.24	0.10	0.17	0.45	0.19	1.5	17
		0.14	0.20	0.18	0.13	0.19	0.11	0.22	0.10	0.98	1.0	0.29	0.18	16
				0.20	0.18	0.24	0.12	0.23	1.2	13	3.8	0.96		15
		0.15	0.17	0.18	0.16	0.22	0.18	0.21	0.57	1.0	1.6	1.6		14
				0.08	0.09	0.31	0.37	0.29	0.40	0.78	34	3.1		13
凡例	0.28	0.14	0.11	0.11	0.11	0.21	0.18	0.25	井戸	1.4	39	92		12
200					0.09	0.27	0.11	0.23		0.41	5.0	5.2		11
100	0.19	0.17	0.29		0.09	0.27	0.26	0.29	基地	0.36	0.48	0.83	0.54	10
50					0.21	0.24	0.48	0.28	0.26	0.33	0.55	0.39	0.52	09
16		0.21	1.2		0.18	0.26	0.14	0.16	0.12	0.37	0.21	0.31	0.72	08
15					0.25	0.18	0.24	0.22	0.06	0.22	0.34	0.44	0.39	07
10			0.22		0.23	0.20	0.17	0.20	0.17	0.26	0.29	0.32	0.31	06
5.0							0.24	0.24	0.27	0.29	0.31	0.51	0.49	05
1.0					0.26		0.21	0.24	0.16	0.24	0.12	0.60	0.28	04
0.5										0.22	0.32	0.18	0.22	03
							0.13		0.17		0.19			02
									0.08		0.15			00
	14	12	10	09	08	07	06	05	04	03	02	01	00	Ух

土壌0-10 cm全含有量 [mg/kg]

土壌0-10 cm溶出量 [mg/L]

水銀分析結果: 土壌10-20 cm **1: 試験方法等が異なることから、評価基準の **2: 試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

量試験の測定結果より大きくなることが一般

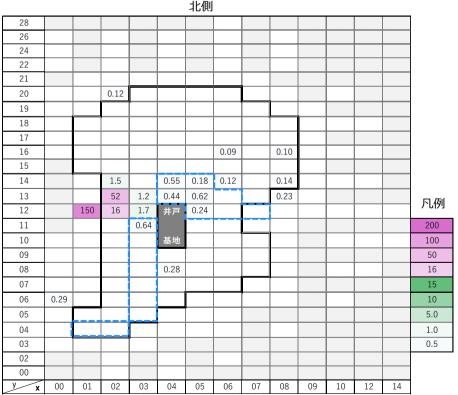
<全含有量>

▶ 評価基準※1

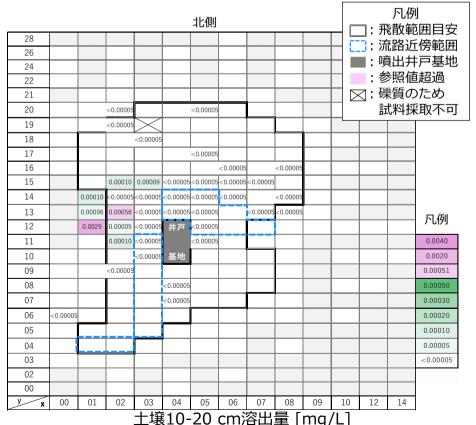
✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (15 mg/kg以下) を参考値※2として比較した

> 評価結果

- ✓ 3地点で評価基準超過が認められ、浅部よりも高い値を示した
- ✓ 噴出井戸から離れた西側(01-12地点)を中心とした分布で あった


く溶出量>

▶ 評価基準※1


✓ 土壌汚染対策法の土壌溶出量基準 (0.0005 mg/L以下) と比較した

> 評価結果

- ✓ 2地点で評価基準超過が認められ、浅部よりも高い値を示した
- ✓ 噴出井戸から離れた西側(01-12地点)を中心とした分布であっ

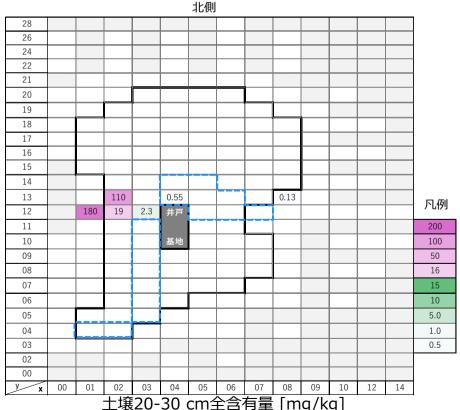
水銀分析結果: 土壌20-30 cm ※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意 がであるため参照可能と考えた

量試験の測定結果より大きくなることが一般

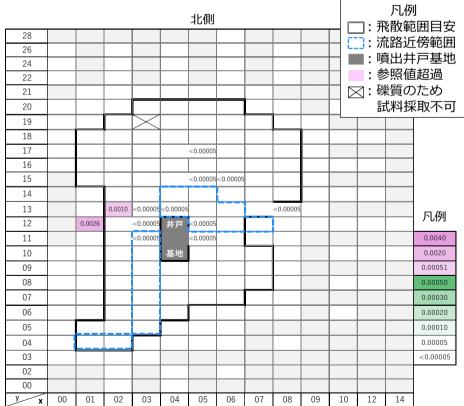
<全含有量>

▶ 評価基準※1

✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (15 mg/kg以下) を参考値※2として比較した


> 評価結果

- ✓ 3地点で評価基準超過が認められ、浅部よりも高い値を示した
- ✓ 調査フロー (p.10) に基づき追加試料採取を実施する


<溶出量>

▶ 評価基準※1

- ✓ 土壌汚染対策法の土壌溶出量基準 (0.0005 mg/L以下) と比較した
- > 評価結果
- ✓ 2地点で評価基準超過が認められた
- ✓ 調査フロー (p.10) に基づき追加試料採取を実施する

土壌20-30 cm溶出量 [mg/L]

ロ 鉛分析結果:リター

<全含有量>

- ▶ 評価基準※1
- ✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (150 mg/kg以下)を参考値※2として比較した
- > 評価結果
- ✓ 評価基準を超過する地点は認められなかった
- ✓ 全域的に同程度の濃度で分布しており、噴出井戸から連続する 濃度減衰は認められなかった

28 11 26 12 8.4 25 25 16 6.6 9.6 12 14 18 22 14 21 14 10 5.8 26 11 9.2 10 12 7.9 14 25 20 20 10 11 9.2 18 11 10 24 19 6.2 21 9.6 5.5 18 9.6 16 18 7.7 12 12 15 13 15 8.8 31 15 17 16 11 13 7.8 11 20 18 16 15 2.6 28 5.1 7.9 10 8.9 13 15 10 9.7 9.8 2.1 1.6 1.3 3.1 13 12 14 1.7 2.5 14 6.2 10 18.0 15 2.0 5.6 12 13 凡例 15 12 14 27 23 20 23 6.5 9.7 26 23 11 10 10 11 12 9.9 9.2 11 10 150超過 9.2 10 15 14 10 7.0 14 15 11 28 16 40 30 09 8.9 11 9.8 7.1 5.7 8.0 6.8 14 11 7.9 12 17 20 7.7 6.7 13 9.2 5.7 6.4 9.3 11 12 10 07 9.8 8.2 5.0 06 21 10 10 10 12 9.9 16 8.0 5.3 7.5 7.0 16 17 3.0 05 7.1 13 04 8.4 9.2 6.2 12 6.2 12 15 1.0 03 21 17 12 02 7.0 00 7.6 7.2 00 01 02 04 05 06 07 08 09 10 12

リター全含有量 [mg/kg]

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

く溶出量>

▶ 評価基準※1

✓ リターには一般的な基準はなく、試験方法も異なることから土壌 溶出量基準を参照できないため、評価基準は設定しない

> 評価結果

✓ 噴出井戸近傍で相対的に高い値が認められるが、濃度分布は散在 的であり、井戸から連続する濃度減衰は認められなかった

28 26 24 22	26 0.04 0.02 0.09 0.06 0.13 24 0.12 0.03 0.02 0.07 0.07													
21		0.07	0.03	0.06	0.04	0.03	0.08	0.03						
20	0.27	0.11	0.05	0.07	0.03	0.13	0.13	0.03	0.05		0.07			
19	0.04	0.03	<0.02	<0.02	0.04	0.08	0.05	<0.02	0.12	0.05				
18	0.17	0.10	0.04	0.05	0.03	0.03	0.03	0.02	0.03	0.04	0.08	0.09		
17	0.09	0.04	0.02	0.03	<0.02	0.03	0.02	0.04	0.03	0.02				
16	0.31	0.03	0.08	<0.02	0.02	0.05	0.05	0.02	0.05	0.07	0.02	0.08		
15		0.04	0.17	0.07	<0.02	0.02	0.02	0.03	0.04	0.13				
14		0.05	0.04	0.03	0.62	0.16	0.15	0.04	0.03	0.03	0.08	0.05		
13		0.05	0.20	0.08	0.24	0.14	0.03	0.02	0.02	0.03				凡.例
12		0.09	0.22	<0.02	井戸	0.02	0.08	0.03	0.11	0.02	0.12	0.09	0.06	7 0173
11		0.12	0.04	0.02		0.02	0.04	0.04	0.05					0.70
10	0.19	0.04	0.11	0.02	基地	0.05	0.02	0.06	0.03		0.07	0.10	0.10	0.50
09	0.06	0.06	0.06	0.04	0.02	0.08	0.05	0.03	0.10					0.30
08	0.16	0.08	0.09	0.05	0.03	0.07	0.04	0.03	0.10		0.04	0.05		0.10
07	0.11	0.15	0.24	0.05	0.02	0.12	0.03	0.04	0.02					0.07
06	0.26	0.13	0.06	0.04	0.04	0.03	0.07	0.04	0.06		0.12			0.05
05	0.10	0.03	0.07	0.03	0.02	0.31	0.06							0.02
04	0.02	0.03	0.10	0.07	0.03	0.05	0.03		0.07					<0.02
03	0.03	< 0.02	0.11	0.07										
02			0.06		0.02		<0.02							
00			0.32		0.02									
у <u>х</u>	00	01	02	03	04	05	06	07	08	09	10	12	14	

リター溶出量[※] [mg/kg]

※リター試料の乾燥重量当たりの含有量として算出しているため次項以降の土壌溶出量とは直接比較できない点に留意

口 鉛分析結果:土壌0-10 cm

<全含有量>

- ▶ 評価基準※1
- ✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (150 mg/kg以下)を参考値※2として比較した

> 評価結果

- ✓ 1地点で評価基準超過が認められ、噴出井戸から離れた東側 (08-13地点) に分布していた
- ✓ 噴出井戸から連続する濃度減衰は認められなかった

北側 凡例 井戸 45 基地 y x 00 01 05 06 07 08 09 10 12

土壌0-10 cm全含有量 [mg/kg]

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

〈溶出量>

- ▶ 評価基準※1
- ✓ 土壌汚染対策法の土壌溶出量基準 (0.01 mg/L以下) と比較した
- > 評価結果
- ✓ 評価基準を超過する地点は認められなかった
- ✓ 全域的に同程度の濃度で分布しており、噴出井戸から連続する濃 度減衰は認められなかった

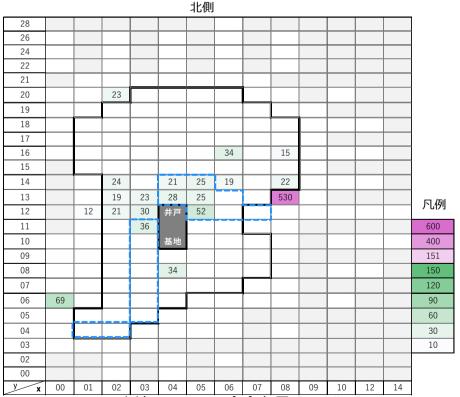
28 26 24 22	<0.001 0.001 0.002		0.001 0.002 0.001		0.001 0.001 <0.001	北側	<0.001 <0.001 0.001		0.003 0.001 <0.001			凡例 □: 飛散範囲目安 □: 流路近傍範囲 ■: 噴出井戸基地 □: 参照値超過		
21		0.003	0.001	0.001	< 0.001	0.002	0.003	0.001			H			
20	0.001	0.001	0.001	< 0.001	0.001	0.003	0.002	0.002	<0.001		0.003			
19	0.001	0.002	0.001	0.003	<0.001	0.002	<0.001	0.003	0.001	0.002				
18	0.001	0.001	0.003	0.001	0.003	0.003	0.001	<0.001	0.001	0.001	<0.001	0.003		
17	< 0.001	0.002	0.001	0.008	<0.001	0.005	<0.001	0.001	<0.001	0.001				
16	0.002	0.002	0.003	0.001	<0.001	< 0.001	0.001	0.002	<0.001	0.001	0.003	< 0.001		
15		0.001	0.004	0.002	0.002	0.002	0.001	0.009	0.002	0.001				
14		0.003	0.002	0.003	0.001	0.001	0.001	0.003	0.001	0.001	0.004	0.002		
13		0.008	0.005	0.002	<0.001	0.001	0.001	0.002	0.008	0.003				[] /[i]
12		0.009	0.002	0.002	井戸	0.002	< 0.001	0.001	0.001	< 0.001	0.002	0.003	0.001	凡例
11		0.009	0.003	0.001		0.001	0.002	0.002	0.001					0.01超過
10	0.003	0.001	0.001	0.001	基地	0.003	0.002	0.002	0.001		0.003	0.003	< 0.001	0.010
09	0.004	0.005	0.008	0.001	0.004	0.001	0.001	0.001	< 0.001					0.008
08	0.001	0.003	0.003	0.004	0.001	0.001	0.001	< 0.001	0.001		< 0.001	0.002		0.006
07	0.001	0.007	0.002	0.001	< 0.001	0.003	0.001	0.001	0.002					0.004
06	0.006	0.003	0.003	0.003	0.001	0.002	0.003	0.002	<0.001		<0.001			0.002
05	0.002	0.003	0.001	0.002	0.002	0.002	0.002							0.001
04	<0.001	0.005	0.001	0.003	0.001	0.001	<0.001		0.001					<0.001
03	<0.001	< 0.001	0.003	0.004										0.00
02			0.003		0.001		< 0.001							
00			0.005		< 0.001									
Ух	00	01	02	03	04	05	06	07	08	09	10	12	14	

土壌0-10 cm溶出量 [mg/L]

口 鉛分析結果:土壌10-20 cm

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

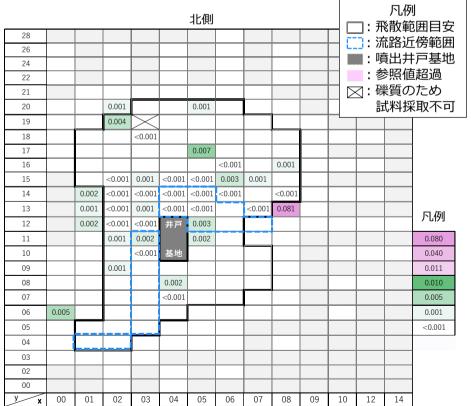

<全含有量>

▶ 評価基準※1

✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (150 mg/kg以下)を参考値※2として比較した

> 評価結果

- ✓ 1地点(08-13地点)で評価基準超過が認められ、浅部よりも 高い値を示した
- ✓ 噴出井戸から連続する濃度減衰は認められなかった


土壌10-20 cm全含有量 [mg/kg]

<溶出量>

- ▶ 評価基準※1
- ✓ 土壌汚染対策法の土壌溶出量基準 (0.01 mg/L以下) と比較した

> 評価結果

- ✓ 1地点(08-13地点)で評価基準超過が認められ、浅部よりも高 い値を示した
- ✓ 噴出井戸から連続する濃度減衰は認められなかった

土壌10-20 cm溶出量 [mg/L]

30

口 鉛分析結果:土壌20-30 cm

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

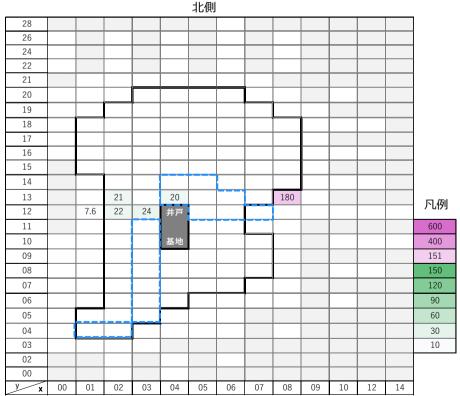
<全含有量>

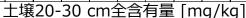
▶ 評価基準※1

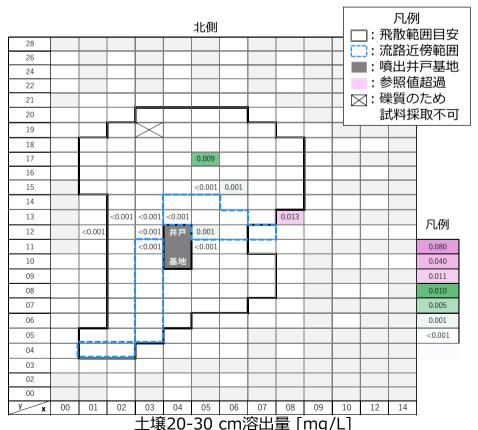
✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (150 mg/kg以下)を参考値※2として比較した

> 評価結果

- ✓ 1地点(08-13地点)で評価基準超過が認められた
- ✓ 噴出井戸から連続する濃度減衰は認められなかった


〈溶出量〉


▶ 評価基準※1


✓ 土壌汚染対策法の土壌溶出量基準 (0.01 mg/L以下) と比較した

> 評価結果

- ✓ 1地点(08-13地点)で評価基準超過が認められた
- ✓ 噴出井戸から連続する濃度減衰は認められなかった

ロ カドミウム分析結果:リター

※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意

量試験の測定結果より大きくなることが一般 的であるため参昭可能と考えた

<全含有量>

▶ 評価基準※1

✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (45 mg/kg以下)を参考値※2として比較した

> 評価結果

- ✓ 評価基準を超過する地点は認められなかった
- ✓ 全域的に同程度の濃度で分布しており、噴出井戸から連続する 濃度減衰は認められなかった

						北側								
28							0.62							
26	0.25		0.65		0.49		0.78		0.65					
24	0.44		0.98		0.45		0.76		0.62					
22	0.79		0.69		0.55		0.64		0.15					
21		0.41	0.82	0.71	0.82	0.88	0.52	0.54						
20	0.75	0.77	0.62	0.59	0.49	0.45	0.86	0.59	0.55		0.37			
19	0.69	0.94	0.88	0.88	0.39	0.53	0.55	0.75	0.80	0.67				
18	0.61	0.58	0.65	0.78	0.53	1.0	0.92	0.68	0.43	0.65	0.44	0.62		
17	0.18	0.55	0.42	0.65	0.37	1.1	0.76	0.80	0.84	0.52				
16	0.38	0.66	0.67	0.36	0.74	0.62	0.69	0.60	0.21	0.86	0.52	0.51		
15		0.30	0.56	0.42	0.25	0.35	0.41	0.34	0.54	0.49				
14		0.60	0.45	0.42	0.04	0.02	0.10	0.47	0.31	0.39	0.44	0.56		
13		0.32	0.38	0.04	0.04	0.01	0.30	0.40	0.61	0.40				[] /[i]
12		0.30	0.31	0.05	井戸	0.52	0.49	0.44	0.48	0.40	0.56	0.41	0.37	凡例
11		0.50	0.53	0.16		0.31	0.44	0.89	0.58					45超過
10	0.16	0.95	0.29	0.56	基地	0.36	0.34	0.35	0.39		0.46	0.55	0.36	3.0
09	0.22	0.46	0.27	0.69	0.63	0.53	0.78	0.48	0.32					2.5
08	0.12	0.85	0.44	0.70	0.57	0.79	0.43	0.49	0.55		0.13	0.57		2.0
07	0.09	0.43	0.36	0.45	0.59	0.59	0.76	0.79	0.70					1.5
06	0.18	0.49	0.53	0.65	0.50	0.88	0.52	0.99	0.64		0.24			1.0
05	0.42	0.36	0.63	0.53	0.96	0.63	0.86							0.5
04	0.44	0.80	0.32	0.61	0.43	1.0	0.41		0.39					0.3
03	0.45	0.68	0.43	0.48										0.1
02			0.43		0.79		0.47							
00			0.38		2.4									
Ух	00	01	02	03	04	05	06	07	08	09	10	12	14	

リター全含有量 [mg/kg]

<溶出量>

▶ 評価基準※1

✓ リターには一般的な基準はなく、試験方法も異なることから土壌 溶出量基準を参照できないため、評価基準は設定しない

> 評価結果

✓ 噴出井戸近傍で相対的に高い値が認められるが、濃度分布は散在 的であり、井戸から連続する濃度減衰は認められなかった

						北側						つ: 邪	凡例] !囲目安
28							0.007					_		傍範囲
26	<0.006		<0.006		<0.006		0.006		<0.006					戸基地
24	<0.006		0.008		<0.006		<0.006		<0.006				超過	
22	0.008		0.009		<0.006		0.011		<0.006			. =		
21		<0.006	<0.006	_			<0.006							
20	0.007	0.006	<0.006				<0.006	< 0.006			<0.006			
19	<0.006	0.006	<0.006			<0.006	<0.006		<0.006	_				
18	<0.006	<0.006	0.006	<0.006	<0.006	<0.006	<0.006			<0.006	<0.006	<0.006		
17	<0.006	0.006	<0.006		<0.006	<0.006	<0.006		<0.006					
16	<0.006	<0.006	<0.006		0.008	<0.006	<0.006		0.007	0.006	<0.006	<0.006		
15		< 0.006	<0.006			<0.006	<0.006		<0.006					
14		<0.006				0.015	0.019	<0.006	<0.006		<0.006	<0.006		
13		<0.006	0.006	<0.006	0.027	0.007	0.032	<0.006						凡.例
12		<0.006	< 0.006		井戸	<0.006	<0.006	<0.006	0.006	<0.006	<0.006	<0.006	<0.006	7 0173
11		0.007	<0.006	<0.006		< 0.006	<0.006	< 0.006	< 0.006					0.036
10	<0.006	0.006	<0.006	0.010	基地	<0.006	<0.006	<0.006	<0.006		<0.006	<0.006	<0.006	0.030
09	<0.006	<0.006	<0.006	0.006	<0.006	<0.006	< 0.006	<0.006	<0.006					0.024
08	< 0.006	0.013	<0.006	0.008	0.007	< 0.006	<0.006	<0.006	< 0.006		<0.006	<0.006		0.018
07	< 0.006	0.007	0.010	0.006	0.007	< 0.006	< 0.006	< 0.006	< 0.006					0.012
06	< 0.006	<0.006	0.008	<0.006	0.011	0.006	0.006	0.008	0.007		0.006			0.006
05	0.006	<0.006	0.011	<0.006	< 0.006	< 0.006	< 0.006							< 0.006
04	<0.006	0.008	<0.006	< 0.006	< 0.006	0.009	< 0.006		< 0.006					0
03	<0.006	<0.006	< 0.006	< 0.006										
02			< 0.006		0.007		<0.006							
00			0.009		0.011									
Ух	00	01	02	03	04	05	06	07	08	09	10	12	14	

リター溶出量[※] [mg/kg]

カドミウム分析結果:土壌0-10 cm *゚

- ※1:試験方法等が異なることから、評価基準の ※2:試験方法より、全含有量試験の結果は含有 超過は土壌汚染対策法における"基準不適合" と同義ではないことに留意
 - 量試験の測定結果より大きくなることが一般 的であるため参照可能と考えた

<全含有量>

▶ 評価基準※1

✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (45 mg/kg以下)を参考値*2として比較した

> 評価結果

- ✓ 評価基準を超過する地点は認められなかった
- ✓ 全域的に同程度の濃度で分布しており、噴出井戸から連続する 濃度減衰は認められなかった

						北側								
28							0.3							
26	0.3		0.4		0.3		0.5		0.3					
24	< 0.3		< 0.3		< 0.3		0.3		0.3					
22	< 0.3		< 0.3		<0.3		0.3		<0.3					
21		0.4	0.4	0.4	0.5	0.3	0.5	0.3						
20	0.3	0.3	0.7	0.4	0.3	0.5	0.6	0.3	< 0.3		0.8			
19	0.3	0.4	0.7	0.3	0.5	0.4	< 0.3	0.3	< 0.3	0.5				
18	0.4	0.3	< 0.3	0.5	0.3	0.5	0.4	0.3	0.5	< 0.3	0.3	<0.3		
17	< 0.3	0.3	0.5	0.4	< 0.3	1.1	0.3	< 0.3	< 0.3	0.3				
16	< 0.3	0.3	< 0.3	0.3	0.4	0.3	0.4	< 0.3	0.7	0.3	< 0.3	0.3		
15		< 0.3	< 0.3	< 0.3	< 0.3	0.4	1.0	1.0	0.5	0.3				
14		0.3	0.3	< 0.3	< 0.3	< 0.3	0.4	<0.3	0.4	0.3	< 0.3	0.3		
13		0.5	0.3	< 0.3	0.4	< 0.3	0.3	0.6	0.8	< 0.3				凡例
12		0.4	< 0.3	< 0.3	井戸	0.4	< 0.3	< 0.3	< 0.3	0.3	0.4	0.4	0.4	ノンレリグリ
11		0.6	0.3	0.3		0.7	< 0.3	1.6	0.5					45超過
10	< 0.3	0.4	< 0.3	0.5	基地	0.3	0.5	0.3	0.5		0.3	<0.3	< 0.3	3.0
09	0.4	0.3	0.3	< 0.3	< 0.3	< 0.3	0.7	<0.3	0.7					2.5
08	< 0.3	0.4	0.3	0.3	0.3	0.3	< 0.3	0.3	0.3		< 0.3	0.4		2.0
07	0.3	0.3	0.3	0.3	0.4	0.4	< 0.3	< 0.3	0.3					1.5
06	0.4	0.3	< 0.3	0.3	< 0.3	0.5	0.3	0.3	0.3		0.6			1.0
05	0.4	0.4	< 0.3	< 0.3	< 0.3	<0.3	0.4							0.5
04	0.8	0.4	0.8	0.7	0.3	0.3	<0.3		<0.3					0.3
03	0.4	0.5	0.3	0.6										< 0.3
02			0.3		<0.3		< 0.3							0.00
00			0.3		0.9									
у х	00	01	02	03	04	05	06	07	08	09	10	12	14	

土壌0-10 cm全含有量 [mg/kg]

<溶出量>

▶ 評価基準※1

✓ 土壌汚染対策法の土壌溶出量基準(0.003 mg/L以下)と比較し た

> 評価結果

- ✓ 評価基準を超過する地点は認められなかった
- ✓ 井戸から離れた2地点でのみ検出され、噴出井戸から連続する濃 度分布は認められなかった

区)	J . - 1	0.10.		凡例 . □: 飛散範囲目安										
28							< 0.0003					_		傍範囲
26	< 0.0003		<0.0003		<0.0003		<0.0003		<0.0003					戸基地
24	<0.0003		<0.0003		<0.0003		< 0.0003		<0.0003					
22	<0.0003		<0.0003		<0.0003		< 0.0003		<0.0003			: 纟	超過	
21		< 0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003						
20	<0.0003	< 0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	< 0.0003	<0.0003		<0.0003			
19	< 0.0003	< 0.0003	< 0.0003	<0.0003	0.0005	<0.0003	<0.0003	<0.0003	< 0.0003	<0.0003				
18	< 0.0003	< 0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	< 0.0003	<0.0003	<0.0003		
17	< 0.0003	< 0.0003	<0.0003	<0.0003	<0.0003	<0.0003	< 0.0003	<0.0003	< 0.0003	< 0.0003				
16	< 0.0003	< 0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	< 0.0003	<0.0003	<0.0003		
15		< 0.0003	<0.0003	<0.0003	<0.0003	<0.0003	< 0.0003	<0.0003	< 0.0003	< 0.0003				
14		< 0.0003	< 0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	< 0.0003	<0.0003	<0.0003		
13		< 0.0003	< 0.0003	<0.0003	<0.0003	< 0.0003	<0.0003	<0.0003	< 0.0003	< 0.0003				[] /[]
12		< 0.0003	< 0.0003	<0.0003	井戸	<0.0003	< 0.0003	< 0.0003	<0.0003	< 0.0003	< 0.0003	<0.0003	< 0.0003	凡例
11		< 0.0003	< 0.0003	<0.0003		< 0.0003	< 0.0003	< 0.0003	< 0.0003					0.003超過
10	<0.0003	<0.0003	<0.0003	<0.0003	基地	< 0.0003	< 0.0003	< 0.0003	< 0.0003		<0.0003	<0.0003	< 0.0003	0.0006
09	< 0.0003	< 0.0003	<0.0003	<0.0003	<0.0003	< 0.0003	<0.0003	<0.0003	<0.0003					0.0005
08	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003		0.0004
07	< 0.0003	< 0.0003	< 0.0003	<0.0003	<0.0003	<0.0003	0.0003	< 0.0003	< 0.0003					0.0003
06	< 0.0003	< 0.0003	< 0.0003	<0.0003	< 0.0003	< 0.0003	<0.0003	< 0.0003	<0.0003		<0.0003			<0.0003
05	<0.0003	< 0.0003	< 0.0003	<0.0003	< 0.0003	< 0.0003	<0.0003							0.00
04	<0.0003	<0.0003	< 0.0003	< 0.0003	<0.0003	<0.0003	<0.0003		<0.0003					
03	<0.0003	< 0.0003	< 0.0003	<0.0003										
02			<0.0003		<0.0003		< 0.0003							
00			<0.0003		<0.0003									
			02		_							12		l

土壌0-10 cm溶出量 [mg/L]

量試験の測定結果より大きくなることが一般

<全含有量>

▶ 評価基準※1

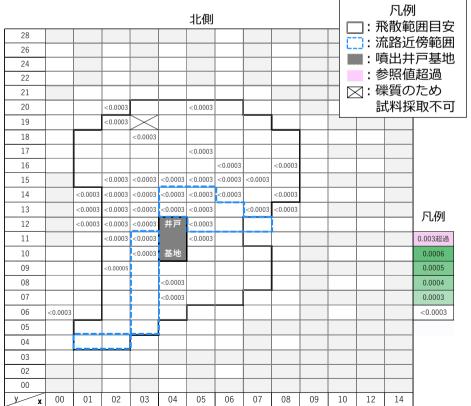
✓ 試験方法は異なるが、十壌汚染対策法の十壌含有量基準 (45 mg/kg以下)を参考値※2として比較した

> 評価結果

- ✓ 評価基準を超過する地点は認められなかった
- ✓ 最大濃度は飛散範囲目安の外側(08-13地点)で確認され、噴 出井戸から連続する濃度減衰は認められなかった

北側 28 26 24 22 21 20 19 18 17 16 15 14 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 13 < 0.3 < 0.3 凡.例 <0.3 #戸 12 < 0.3 0.3 11 < 0.3 45超過 10 基地 3.0 09 2.5 08 < 0.3 2.0 1.5 07 1.0 06 < 0.3 0.5 05 0.4 0.3 03 < 0.3 02 00 y x 00 01 02 03 04 05 06 07 08 09 10 12

土壌10-20 cm全含有量 [mg/kg]


く溶出量>

▶ 評価基準※1

✓ 土壌汚染対策法の土壌溶出量基準(0.003 mg/L以下)と比較し

> 評価結果

✓ 全地点で定量下限値未満であり、評価基準を超過する地点は認め られなかった

土壌10-20 cm溶出量 [mg/L]

量試験の測定結果より大きくなることが一般

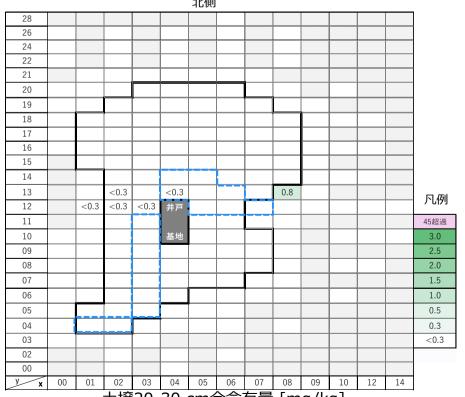
<全含有量>

▶ 評価基準※1

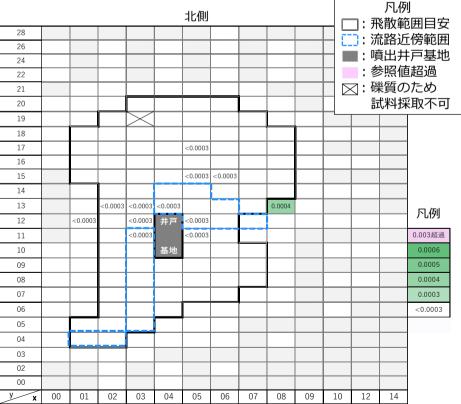
✓ 試験方法は異なるが、土壌汚染対策法の土壌含有量基準 (45 mg/kg以下)を参考値※2として比較した

> 評価結果

- ✓ 評価基準を超過する地点は認められなかった
- ✓ 井戸から離れた1地点でのみ検出され、噴出井戸から連続する 濃度分布は認められなかった


く溶出量>

▶ 評価基準※1


✓ 土壌汚染対策法の土壌溶出量基準(0.003 mg/L以下)と比較し

> 評価結果

- ✓ 評価基準を超過する地点は認められなかった
- ✓ 井戸から離れた1地点でのみ検出され、噴出井戸から連続する濃 度分布は認められなかった

土壌20-30 cm全含有量 [mg/kg]

土壌20-30 cm溶出量 [mg/L]

ロ 噴出による汚染の有無

- ▶ 噴出による汚染の有無の認定方法【審議事項】
- ✓ 蒸気噴出時の状況を示す映像や証言より、噴出時には下図の状況であったと考えられ、噴出による汚染が発生する場合には、①噴出物に有害物質(自然由来の重金属等)が含まれ、②その物質の濃度が噴出井戸の直近の地表面で高く、井戸から連続的に遠方へ濃度が低くなり(噴出井戸から連続した濃度減衰)、鉛直方向に物質が移行することが想定される
- ✓ したがって、現地で下記の状況が確認された場合に蒸気噴出による汚染が発生した(噴出影響あり)と認定する
 - ① 噴出物(水・固体物)の調査で重金属等の含有が確認される
 - ② 土壌調査において、噴出物に含まれる重金属等の濃度減衰が平面的に噴出井戸から連続して認められ、

鉛直方向への移行が認められる ※ここでは噴出物の飛散による直接的な 飛散範囲目安(蒸気噴出抑制後の空中写真より設定) 汚染を模式的に示し、白濁水の流下に よる土壌汚染は別途取り扱う 蒸気 ①噴出物 噴出 (水・固体物) 噴石状の 固体物が落下 の調査 19 6 6 6 粉じんが飛散 (0) 0 0 (o) (\circ) 6 0 6 水滴に粉じんが 6 含まれて落下 ② 土壌調査 <鉛直分布> 〈平面分布〉 地表面に落下した汚染物質は 汚染の濃度は噴出井戸の直近で最も高く ※濃度の大小(基準値等の超過有無) 時間経過とともに鉛直下方へ移行する 井戸から遠くへ離れるにつれ ではなく、分布状況に基づいて噴出 (噴出初期には地表面が最も濃度が高い) 連続的に濃度が減衰する による汚染の有無を認定する

ロ 噴出による汚染の有無

※土壌汚染対策法による土壌含有量基準および土壌溶出量基準を参考に評価しており、 試験方法等が異なることから、基準超過は土壌汚染対策法における"基準不適合"と 同義ではないことに留意

- > 土壌調査(概況調査・詳細調査)と噴出物調査の総括【審議事項】
- ✓ 噴出による汚染の有無の認定方法【p.35】を適用し、土壌調査結果を下表のとおり総括した
 - ✓ 砒素:噴出物に多く含まれており、土壌の全含有量と溶出量ともに平面的に噴出井戸から連続した濃度減衰と鉛直下方への移行が明瞭に認められ、参考基準等※を超過する地点がある
 - ✓ ほう素・ふっ素:噴出物にわずかに含まれており、土壌の全含有量と溶出量ともに平面的に噴出井戸から連続した不明瞭な濃度減衰が見受けられ、井戸の直近において鉛直方向への移行が認められるが、参考基準等※未満である
 - ✓ 水銀・鉛:噴出物にはほとんど含まれておらず、土壌において平面的に噴出井戸から連続した濃度減衰は認められず、 全含有量と溶出量が参考基準等※を超過する箇所が局在する
 - ✓ カドミウム・セレン・六価クロム:噴出物にはほとんど含まれておらず、土壌において平面的に噴出井戸から連続した 濃度減衰は認められず、全含有量と溶出量は参考基準等※未満である

項目	砒	素	ほう	う素	ふこ	>素	水	銀	金	台	カドミ	ミウム	セレ	ノン	六価ク	ンロム	調査結果
対象	全含有量	溶出量	全含有量	溶出量	全含有量	溶出量	全含有量	溶出量	全含有量	溶出量	全含有量	溶出量	全含有量	溶出量	全含有量	溶出量	掲載ページ
噴出物	0	0	∇	∇	∇	∇	∇	∇	∇	0	∇	0	∇	∇	∇	∇	参考資料
																	p.20-23
リター	0	_	0	_	0	_	∇	_	∇	_	∇	_	∇	_	∇	_	
土壌 深度0-10cm	0	0	0	0	0	∇	\Diamond	\Diamond	\Diamond	∇	∇	∇	∇	∇	∇	∇	審議資料
土壌 深度10-20cm	0	0	0	0	0	0	\Diamond	\Diamond	\Diamond	\Diamond	∇	∇	•	•	•	•	p.11-34
土壌 深度20-30cm	0	0	0	0	0	∇	\Diamond	\Diamond	\Diamond	\Diamond	∇	∇	•	•	•	•	
	噴出によ	る影響が	砒素と	司様に概	砒素と同	司様に概	井戸から	約 50 ~	井戸から	約200m	井戸から	約200m	参考基準	值等未満	参考基準	值等未満	
	明瞭で2	025年融	況・詳細	調査のリ	況・詳細	調査のリ	100m 離	れた3地	離れた1	地点で参	離れた1	地点(鉛	のため概	況調査の	のため概	況調査の	
試験概況	雪後に追	加調査を	ターから	土壌深度	ターから	土壌深度	点で参考	基準等超	考基準等	超過	と同じ)	で参考基	リターと	土壌深度	リターと	土壌深度	
	実施する		20-30cm	nまで分	20-30cm	nまで分	過				準等超過		0-10cm	のみ分析	0-10cm	のみ分析	
			析		析								して終了		して終了		

凡.例

<噴出物>

<リターおよび土壌>

- ◎ 参考基準等超過
- ▽ 参考基準等未満
- ◎ 試験実施・噴出影響明瞭・参考基準等超過
- 試験実施・噴出影響不明瞭・参考基準未満
- ◇ 試験実施・噴出影響なし・参考基準等超過
- ▽ 試験実施・噴出影響なし・参考基準等未満
- 試験実施・評価外(参考基準値*なし)
- 試験実施なし

ロ 噴出による汚染の有無

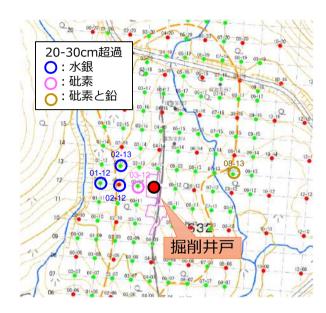
※土壌汚染対策法による土壌含有量基準および土壌溶出量基準を参考に評価しており、 試験方法等が異なることから、基準超過は土壌汚染対策法における"基準不適合"と 同義ではないことに留意

- > 調査結果に基づく汚染有無の評価【審議事項】
- ✓ 前項の本委員会での調査結果と事業者モニタリング結果より、蒸気噴出による汚染の有無を下記のとおり評価する

Um FF	汚染有無の評価		委員会での調査結果 関査結果掲載ページ】		事業者モニタ 【調査結果担	
物質	【噴出影響】	土壌調査(概況調査		噴出物分析結果 最大値	噴出水分析結果 最大値	大湯沼分析結果
		平面分布	鉛直分布	取入胆	取入但	
砒素	【明瞭】 噴出物に多く含まれており、全含有量と溶出量 ともに平面的に噴出井戸から連続した濃度減衰 と鉛直下方への移行が明瞭に認められ、参考基 準等※を超過するため、噴出による汚染が明瞭に 認められると評価する	✓噴出井戸から連続する全含有量と 溶出量の明瞭な濃度減衰が認められ、参考基準等※を超過 【審議資料p.11-12】	✓鉛直方向に深度30cmまで全含有量と溶出量がの減衰が認められ、参考基準等*を超過 【審議資料p.13-14】	✓全含有量:7100 mg/kg ✓溶出量:24 mg/L 【参考資料p.22-23】	✓27 mg/L 【参考資料p.64】	√噴出直後は高く 抑制後は安定 【参考資料p.64】
ほう素	【不明瞭】 噴出物にわずかに含まれており、全含有量と溶 出量ともに平面的に噴出井戸から連続した不明 瞭な濃度減衰があり、井戸の直近で鉛直方向へ の移行が認められるため、噴出による汚染が不 明瞭ながら認められると評価する	✓噴出井戸の近傍と北側で相対的に 全含有量と溶出量がやや高い傾向 があり、井戸から連続する濃度減 衰は砒素より不明瞭 【審議資料p.15-16】	√噴出井戸北側直近で鉛 直方向の移行が認めら れる 【審議資料p.17-18】	✓全含有量:4.0 mg/kg ✓溶出量:0.2 mg/L 【参考資料p. 22-23】	✓ 22 mg/L 【参考資料p.65】	✓噴出直後は高く 抑制後は安定 【参考資料p.65】
ふっ素	【不明瞭】 ほう素と同様	✓噴出井戸の近傍と北側で相対的に 全含有量がやや高い傾向があり、 井戸から連続する濃度減衰は砒素 より不明瞭 【審議資料p.19-20】	✓噴出井戸北側直近で鉛 直方向の移行が認めら れる 【審議資料p.21-22】	✓全含有量:170 mg/kg ✓溶出量:0.7 mg/L 【参考資料p. 22-23】	✓1.8 mg/L 【参考資料p.66】	✓ ほぼ定量下限値 未満 【参考資料p.66】
水銀	【なし】 噴出物にはほとんど含まれておらず、平面的に 噴出井戸から連続した濃度減衰は認められず、 全含有量と溶出量が参考基準等*を超過する箇所 が局在するため、噴出による汚染ではなく調査 地に元来存在する可能性があると評価する	✓噴出井戸から連続する全含有量と 溶出量の濃度減衰は認められない ✓噴出井戸から離れた西側に溶出量 の参考基準等※超過が局在 【審議資料p.23-24】		✓全含有量: 0.66 mg/kg ✓溶出量:定量下限值未満 【参考資料p. 22-23】	✓定量下限值未満 【参考資料p.67】	✓定常的に高い濃度が認められる 【参考資料p.67】
鉛	【なし】 水銀と同様	✓噴出井戸から連続する全含有量と 溶出量の濃度減衰は認められない ✓噴出井戸から離れた東側の1地点 で溶出量が参考基準等*を超過 【審議資料p.27-28】		✓全含有量: 28 mg/kg ✓溶出量: 0.014 mg/L 【参考資料p. 22-23】	✓0.023 mg/L 【参考資料p.68】	✓ほぼ定量下限値 未満 【参考資料p.68】
カドミウム	【なし】 噴出物にはほとんど含まれておらず、平面的に 噴出井戸から連続した濃度減衰は認められず、 全含有量と溶出量は参考基準等*未満のため、噴 出による汚染は認められないと評価する	✓噴出井戸から連続する全含有量と 溶出量の濃度減衰は認められない 【審議資料p.31-32】	✓鉛直方向の移行は認め られない 【審議資料p.33-34】	✓全含有量:定量下限值未満 ✓溶出量:0.0042 mg/L 【参考資料p. 22-23】	✓定量下限値未満 【参考資料p.69】	✓定量下限值未満 【参考資料p.69】

注:定量下限値未満:正確に定量できる(信頼できる)最小値より小さいことを意味する

5. 噴出による汚染範囲と濃度(土壌調査)


ロ 深度方向追加調査の計画【審議事項】

> 調査対象

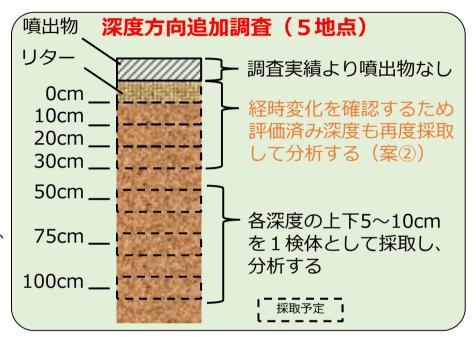
✓ 調査フロー【p.10】に基づき、深度20-30cmまで基準超過で あった5地点について深度100cmまで試料を採取し、重金属等 の全含有量と溶出量を測定する

> 分析項目

✓ 汚染有無の評価【p.37】に基づき、汚染が明瞭に認められる砒素と、調査地に元来存在する可能性がある水銀を対象とする

	試験種別			全含有	量試験			ÿ	容出量試験(リターは含有	重換算であ	るため参考	直として表示)	
地点	項目	砒素	ほう素	ふっ素	水銀	鉛	かミウム	砒素	ほう素	ふっ素	水銀	鉛	からウム	溶出液pH	追加調査の
地点		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	冷山/gpn	試験内容
	基準値	150	4000	4000	15	150	45	0.01	1	0.8	0.0005	0.01	0.003	_	
	リター	39	11	1.9	0.07	14	0.3	6.0	<2	<2	<0.01	0.09	<0.006	5.1	
01-12	土壌0-10cm	12	9.7	30	92	15	0.4	0.014	<0.1	<0.08	0.0018	0.009	<0.0003	5.0	
地点	土壌10-20cm	7.9	16	72	150	12	<0.3	0.004	<0.1	<0.08	0.0029	0.002	<0.0003	5.9	工口行至 /7山里
	土壌20-30cm	6.4	11	86	180	7.6	<0.3	0.002	<0.1	<0.08	0.0026	<0.001	<0.0003	5.5	
	リター	33	8.5	15	1.8	27	0.3	3.9	<2	<2	<0.01	0.22	<0.006	5.5	
02-12	土壌0-10cm	23	26	71	39	30	<0.3	0.008	<0.1	<0.08	0.00022	0.002	<0.0003	5.6	全含有量のみ
地点	土壌10-20cm	17	29	110	16	21	<0.3	<0.001	<0.1	<0.08	0.00005	<0.001	<0.0003	5.3	主呂有里のの
	土壌20-30cm	17	39	160	19	22	<0.3	分析不要	分析不要	分析不要	分析不要	分析不要	分析不要	分析不要	
	リター	42	24	2.7	0.75	13	0.4	7.8	3	<2	0.01	0.20	0.006	4.6	
	土壌0-10cm	47	14	46	34	29	0.3	0.046	<0.1	<0.08	0.00063	0.005	<0.0003	5.7	全含有量•溶出量
地点	土壌10-20cm	16	25	46	52	19	<0.3	0.001	<0.1	<0.08	0.00058	<0.001	<0.0003	8.0	王召有里 洛田里
	土壌20-30cm	12	18	68	110	21	<0.3	<0.001	<0.1	<0.08	0.0010	<0.001	<0.0003	6.1	
	リター	370	6.8	36	0.01	23	0.1	22	<2	<2	<0.01	<0.02	<0.006	4.6	
03-12	土壌0-10cm	440	29	140	1.4	40	<0.3	0.32	0.1	<0.08	<0.00005	0.002	<0.0003	5.1	全含有量•溶出量
地点	土壌10-20cm	380	43	150	1.7	30	<0.3	0.074	0.1	<0.08	<0.00005	<0.001	<0.0003	6.8	土口行里 / 位山里
	土壌20-30cm	210	36	100	2.3	24	<0.3	0.021	0.1	<0.08	<0.00005	<0.001	<0.0003	5.9	
	リター	20	17	3.8	0.05	12	0.6	2.1	<2	<2	<0.01	0.02	<0.006	6.4	
08-13	土壌0-10cm	19	9.8	17	0.09	180	0.8	0.032	<0.1	<0.08	<0.00005	0.008	<0.0003	6.2	
地点	土壌10-20cm	21	20	81	0.23	530	2.1	0.046	<0.1	<0.08	<0.00005	0.081	<0.0003	6.6	
	土壌20-30cm	28	21	79	0.13	180	0.8	0.017	<0.1	<0.08	<0.00005	0.013	0.0004	5.4	

ロ 深度方向追加調査の計画【審議事項】


> 採取方法

- ✓ 地表面から深度100cm (最大で110cm) まで人力で掘削し、右図のとおり試料を採取する
- ✓ 掘削位置は以下の2案より選定する案①:前回の掘削位置と全く同じ地点

同一地点での評価が可能であるが、一度掘削しているため降水が浸透しやすい状況であり、2024年6月の試料採取時とは性状が異なっている可能性がある

案②:前回の掘削位置に隣接する地点

対比の観点からすると全く同じ試料とはならないが、 掘削による影響を受けていない土壌試料を採取でき 鉛直下方への移行状況を把握できる

案①の掘削位置

案②の掘削位置

5. 噴出による汚染範囲と濃度(土壌調査)

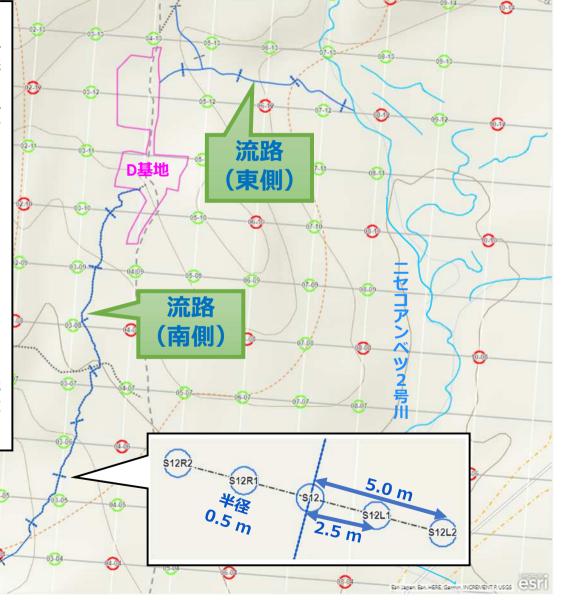
ロ 流路沿いの土壌調査計画【審議事項】

<調査目的>

- ✓ 噴出の際には白濁水が周辺へ流出しており、この流路 沿いに汚染が懸念されることから、リターと土壌を採 取して分析する
- ✓ 面的かつ網羅的な概況調査および詳細調査にこの流路 沿いの調査を追加することで、当地の汚染状況を包括 的に把握する

<調査対象>

✓ 噴出時の状況よりD基地の東側と南側の2箇所の流路

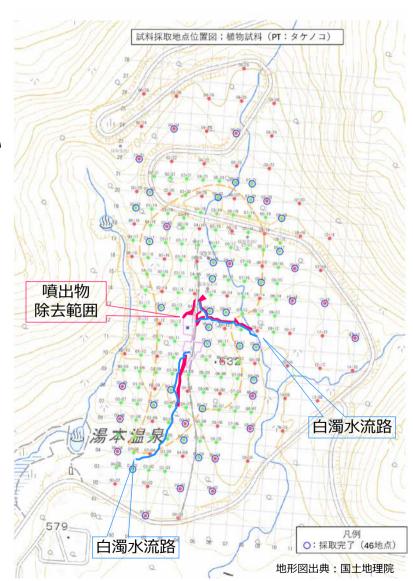

く調査方法>

- ✓ 流路の中心線を設定し50m間隔で採取位置を配置する
- ✓ 上記の位置において流路に対して直交方向に2.5mと 5mの位置にも採取位置を配置する
- ✓ 深度方向の採取位置は、実施済みの土壌調査(概況調査・詳細調査)と同様とする

<調査結果>

✓ 2024/11/6-8で試料採取を試みたが、降雪のため一部 箇所での試料採取のみとなったため、来春の融雪後に改 めて採取を試みる

大湯沼


ロ 植物試料(タケノコ)分析結果

> 調査概要と分析結果

- ✓ 24/6/3~7に採取したタケノコ46試料の砒素の全含有量 の分析結果を以下に示す
- ✓ 噴出井戸近傍で全含有量が高く、周辺に向かうほど低く なる傾向があり、井戸北側では南側より数値が高い
- ✓ 砒素以外の重金属では、明瞭な分布傾向は認められない
- ✓ その他の植物*では、試料数が少なく分布傾向は不明確 であった *: ウト・ぜンマイ・キョウシャニンニク

\mathcal{C}	J / C	•						^	·	_	– (. 7.	
28													
26													
24			0.73				0.56						
22	0.34												
21							0.82	0.50					
20		0.63				1.2		<1	0.41				
19	0.83									0.55			
18			1.2										
17		1.1								0.71			
16						2.2	2.1				0.30		
15						1.6			0.75				
14											0.42	0.28	
13			2.1			19	3.0						
12					井戸	2.1							0.40
11						2.1		1.0	0.55				
10					基地								
09									0.20				
08	0.18			0.82					<1				
07			0.58			<1							
06	0.22				0.36			0.22					
05					0.20								
04	0.23					<0.1	< 0.1						
03		< 0.1											
02					0.09		<0.2						
00			0.09										
y _x	00	01	02	03	04	05	06	07	08	09	10	12	14
				/n=:				·					

タケノコ(PT試料) 砒素全含有量 [mg/kg]

タケノコ(PT試料)試料採取位置

ロ 植物試料分析結果を受けての対応

> 第4回委員会指摘事項

- ✓ 分析手法について、可食部と非可食部とで分けてはどうか
- ✓ 比較基準として食品安全委員会(内閣府)、福島1F関連調査(国環研)などが参考となるかもしれない
- ✓ 噴出影響範囲外のタケノコを採取し、通常どの程度の砒素が含まれるかを把握しておくと良い。
- ✓ 昨年度より、事業者にて看板設置などの対応がなされている旨を示しておくと良い

> 事業者による対応状況

- ✓ 2024年の春から秋にかけて、井戸周辺道路沿い74箇所に看板を設け、立入を控える旨のお願いを記載 (北海道庁および蘭越町と協議の上、記載内容を決定)
- ✓ 2025年以降については委員会での分析結果を受け、看板再設置に加えて、ロープ等による立入規制範囲の明示を新たに実施することとした(北海道庁および蘭越町と協議確認済み)

看板設置状況(2024年5月)

5. 噴出による汚染範囲と濃度(土壌調査)

口 植物体追加調査計画【審議事項】

> 採取位置

- ✓ 過年度調査の分析結果と採取実績を踏まえ、右図の黒破線範囲(160地点) での採取を実施し、影響範囲外の対比用に作業基地周辺でも採取する
- ✓ 過年度の採取方法と同様に、土壌調査地点杭周辺(半径10m程度の範囲内) で必要量を採取することとする

> 採取時期

- ✓ 2024年はほぼ融雪が完了した6月初週に採取したところ、一部ではタケノコが収穫済みであったことから、2025年は時期を早め5月3週~4週にかけて融雪状況を確認しつつ採取を行う
- ✓ タケノコの繋茂時期を考慮すると、2024年は6月初週~2週目が最盛期であった(蘭越町および事業者よりヒアリング)ことから、採取時期については作業実施タイミングを調整できるよう準備する

> 採取対象

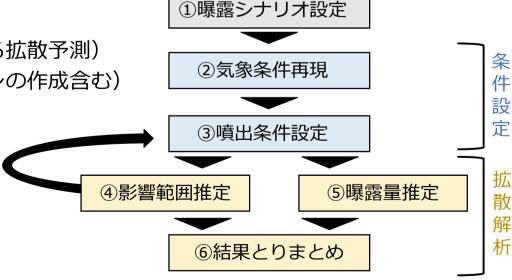
✓ 基本的にタケノコを採取対象とするが、ウド・フキ・ゼンマイ等についても、 地点杭周辺で発見できた場合には採取し分析に供する(おそらく限られた分布となる)

> 分析方法

✓ タケノコを主対象として、採取後に直ちに可食部(中心部)と非可食部(皮)に分別し全含有量分析 に供する

> 分析項目

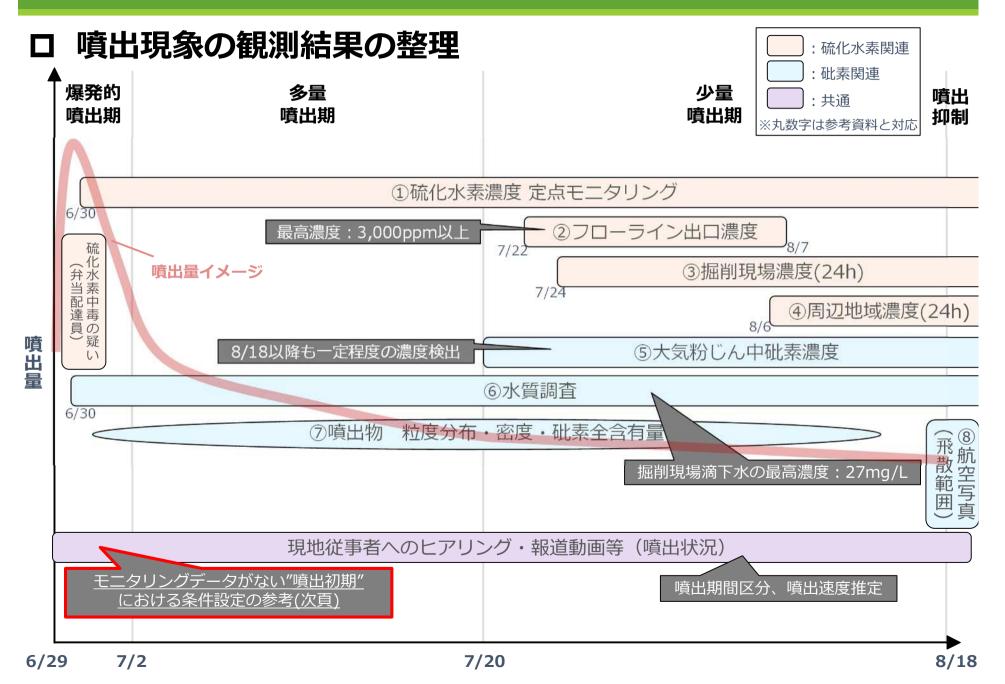
✓ 噴出による明瞭な汚染が認められる砒素を分析対象項目とする (ほう素・ふっ素は、確認された濃度が小さく生体毒性も低いことから分析を省略する)


口 目的

北海道蘭越町において2023年6月下旬に発生し約2か月間続いた掘削井戸からの蒸気噴出に関し、人への曝露の影響を評価するため、硫化水素ガスおよび噴出物に由来する砒素の大気中への拡散状況を、現時点で入手できる情報に基づき再現し、<u>汚染範囲と曝露量の推定</u>に資することを目的とする

口 検討手順

- ① 曝露シナリオ設定
- ② 気象条件再現
- ③ 噴出条件設定
- ④ 影響範囲推定(プルーム式・パフ式)
- ⑤ 曝露量推定(シミュレーションによる拡散予測)
- ⑥ 結果とりまとめ(拡散アニメーションの作成含む)


評価対象・アウトプットの再整理 噴出条件の見直し

ロ 噴出条件見直しの必要性

第4回委員会で提示した気象条件および噴出条件により、④影響範囲推定(プルーム式・パフ式)および⑤曝露量推定(シミュレーション)を実施したところ、下記に示す課題が明らかとなったため、本検討の評価対象とアウトプットを再整理し、噴出条件の一部を見直すこととした

- ▶ 砒素(粉じん)について、④影響範囲推定では、安全側での推定のために重力沈降を見込まないこととしていたが、試算すると遠方に拡散しすぎる結果となり、土壌調査結果による影響範囲との差異が大きかった
 - ⇒重さを持つ粒子態として重力沈降を見込んで計算する必要がある
- ≫ 粉じんの砒素含有量について、噴出物もしくは基地周辺で測定された土壌の砒素含有量に基づき設定することとしていたが、これらの濃度はばらつきが大きく、適切な濃度設定の方法について考慮する必要がある
- ▶ 硫化水素の噴出気体中濃度について、少量噴出期のモニタリング結果と整合を図る場合、かなり高濃度での設定が必要となり、適切な濃度設定の方法について考慮する必要がある
- ▶ 人健康影響の評価を目的とした大気シミュレーションでのアウトプット(評価項目・曝露経路・評価時間(1時間値・噴出期間中平均値)など)について改めて整理する

ロ噴出初期の現地状況

> 噴出井戸

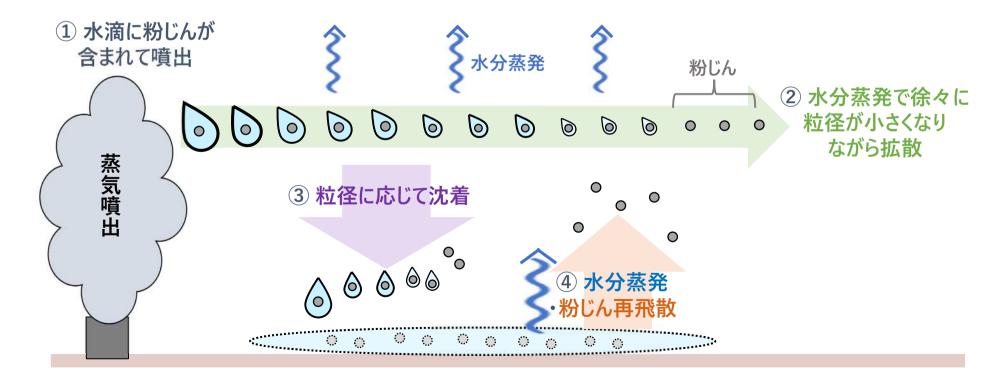
- ✓ 現地従事者より「現場には霧雨のように噴出水が降っていた」との証言あり
- ▶ 地点A(北北東方向約360m地点)
 - ✓ 道路や周辺の葉に白い噴出物が付着(↓写真)
 - ✓ 現地従事者より「雨のような状態で飛んできて降ったものが乾いたような状況だった」との証言あり

2023/6/30撮影

- ▶ 地点B(北北東方向約850m地点)
 - ✓ 周辺の葉に白い噴出物が付着(写真→)
- ▶ **地点C**(南南東方向 約3.5km地点)
 - ✓ 地元住民より、「駐車している車に白色 の付着物がついた」との証言あり

地形図出典:国土地理院

2023/6/29 16:30撮影


ロ 評価対象(再現対象)の整理

> 硫化水素

✓ ガスの形態で噴出・拡散 ⇒ 第4回委員会から変更なし

> 砒素

- ✓ ①水滴に粉じんが含まれる形で噴出 → ②空気中で徐々に水分が蒸発しながら拡散
 - → ③水滴・粉じんの粒径に応じて沈着 → ④水分蒸発後に粉じんが再飛散
 - ⇒ 第4回委員会までは、水滴と粉じんそれぞれに対して噴出量や濃度、粒径を設定していたが、水滴と粉じんが合わさった"飛散粒子"として条件を設定する

ロ 解析アウトプットの整理

▶ 曝露地点における①短期曝露と②噴出期間中の総量を大気シミュレーションにより算出する

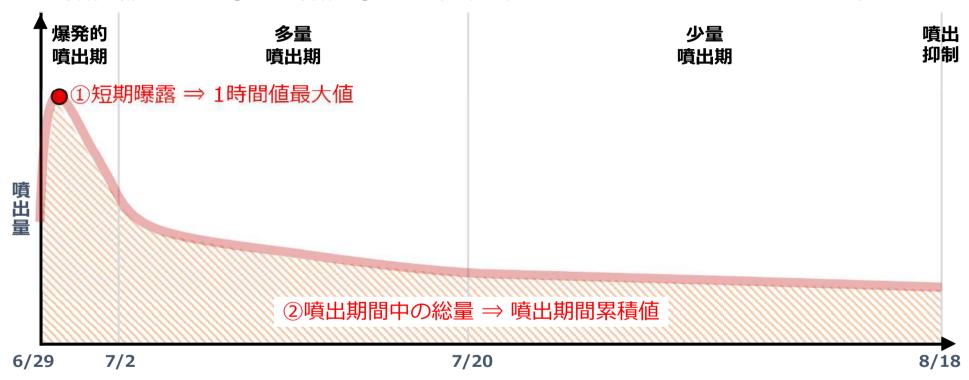


表 曝露量 (大気経由) 評価のためのアウトプット

期間/物質	硫化水素	砒素	
①短期曝露	爆発的噴出期の大気中濃度1時間最大値 (直近集落などの位置)	_	数値シミュ レーション
②噴出期間 中の総量	_	大気中濃度 噴出期間累積値 (直近集落などの位置)	プルーム式・ パフ式

ロ 今後の検討方針

物質	課題	検討方針
硫化水素	・ 噴出気体中の硫化水素濃度の設定 →少量噴出期にフローライン出口で 3,000ppm以上が観測されている が、期間中の変動が不明	・ 地熱発電等で発生する一般的な硫化水 素濃度について、他事例等を確認・ 計算結果と現地状況(硫化水素中毒の 疑い)の比較により数値のオーダーの 整合性を確認
砒素	・ 飛散粒子の水分蒸発過程の再現は困難・ 飛散粒子の噴出量・砒素濃度の設定・ 飛散粒子の粒径条件の設定方法・ 粉じんの再飛散による影響検討	 拡散中は一定の粒径と仮定 噴出水量や水滴中砒素濃度等のモニタリング結果に基づき設定 航空写真(2023/8/18撮影)の飛散範囲目安と、プルームパフ式によるコンター図の傾向が概ね一致するような粒径条件を設定(ストークス式により重力沈降を考慮*) 噴出期間以降の粉じん中砒素濃度モニタリング結果を参考に検討(一次拡散による影響検討後)

※ストークス式では近似限界の0.16mmを超える粒径は適用範囲外となる (粒径が大きいものは基地周辺に沈着するため、直接的な人健康影響は発生しないと考えられる)

ロ 生態系への影響の評価方針

第2回委員会審議資料より再掲

▶ 前提条件

✓ 蒸気噴出による生態系への影響を把握するには、噴出前の状況や自然要因による生態系の構成要素の変動を考慮する必要がある

>課題

✓ 蒸気噴出前の生態系への影響を把握できる環境情報は少なく、噴出直後の情報も得られていない

▶ 対応策

✓ そこで、以下に示す3つの目的で蒸気噴出後の変化を定期的にモニタリングすることで、 どの程度環境変化が推移しているかを確認する

想定する	影響因子		
噴出物の飛散 による影響	砒素等に よる影響	目的	モニタリング内容
		(1)距離に	噴出箇所からの離隔距離に応じた植物、哺乳類(ネズミ
		よる影響	類)、鳥類、昆虫類の生息・生育状況の比較
		(2)砒素の	噴出箇所とその他地域における哺乳類(ネズミ類)、
		蓄積	魚類、水生昆虫に蓄積した砒素の比較
		(3)既存調査	蒸気噴出前の環境影響調査(植物、鳥類、魚類、底生動
		との比較	物)との出現種、重要種、樹木影響度の比較

7. 噴出による生態系(動植物)への影響

ロ 生態系モニタリング調査項目・調査時期

第4回委員会審議資料より再掲

- ▶ 「噴出箇所からの距離による影響」・「砒素の蓄積」・「既存資料との比較」の3つの目的で調査を構成
- ▶ 「距離による影響」は、植物相、植生、展葉状況、哺乳類(ネズミ類)、鳥類相、昆虫類相について、噴出箇所からの 100 mごとの離隔に応じた調査を実施
- ▶ 「砒素の蓄積」は、哺乳類(ネズミ類)、魚類相、水生昆虫相に着目した調査を実施
- ▶ 「既存資料との比較」は、植物相、植生、樹木影響度、鳥類相、魚類相、水生昆虫相、甲殻類の調査を実施

	項		調査	目的(※)	時期	調査地区	調査方法	調査項目	備考
	块		距離	砒素	比較	10×0	啊 且,吃 C	啊且刀 从		V#I√
		植物相			•	春・夏・秋	噴出箇所周辺	目視確認	植物相 重要種の分布	その他生物も記録 (両生類等)
			•			夏	噴出~約500m	目視確認	種数・重要種等	18コドラート
村	直物	植生	直生		•	夏	噴出箇所周辺	群落組成調査	被覆率・優占種等	3コドラート
		但工	•			夏	噴出~約500m	群落組成調査	植被率・噴出物等	18コドラート
		樹木影響度			•	夏	噴出箇所周辺	目視確認	影響度を5段階評価	R5調査立木の追跡
		展葉状況	•			春・夏	噴出~約500m	全天空写真・目視確認	開空率・展葉状況	林道・18コドラート
		ネズミ類	•			夏	噴出~約500m	シャーマントラップ	種数・個体数	18コドラート
	で開すし大只	イベース		•		夂	1km以遠(対照区)	肝臓から砒素分析	砒素濃度	対照区9コドラート
						初夏	噴出~約500m	定点調査(録音機)	種数	18コドラート
	鳥類	鳥類相			•	(5~6月)	噴出箇所周辺・ 過年度調査範囲	ラインセンサス 定点調査	種数・個体数・優占種等	3ライン 3定点
動物	昆虫類	昆虫類相	•			夏	噴出~約500m	ピットフォールトラップ・ ライトトラップ・任意採集	種数・個体数・優占種等	18コドラート
	魚類	魚類相			•	夏	ニセコアンベツニ号川・	捕獲調査	種数・個体数・優占種等	3地点
	洲灰	元 次位		•		夂	同水系河川(対照区)	肝臓から砒素分析	砒素濃度	3地点・対照区1地点
		水生昆虫相			•	夏	ニセコアンベツニ号川・	定量調査・定性調査	種数・個体数・優占種等	3地点
	底生	小工比玉伯		•			同水系河川(対照区)	個体から砒素分析	砒素濃度	3地点・対照1地点
	動物	甲殼類			•	夏	ニセコアンベツニ号川・ その他支沢	捕獲調査	分布状況	4地点+住民情報1地点

※ 距離:距離による影響、砒素:砒素の蓄積、比較:既存調査との比較

ロ 2024年調査結果の総括

✓ 「距離による影響」・「砒素の蓄積」・「既存調査との比較」という3つの目的で 「植物相・植生・樹木影響度・展葉状況・哺乳類(ネズミ類)・鳥類相・昆虫類 相・魚類相・水生昆虫相・甲殻類」のモニタリングを実施

> 距離による影響

- ✓ 植物相(種数)・植生(植被率)・展葉状況(開空率)・昆虫類(種数)は噴出との関連性が考えられる
- ✓ ネズミ類・鳥類相は離隔距離に応じた特徴はみられない

▶砒素の蓄積

- ✓ ネズミ類は噴出筒所付近で砒素濃度が高く噴出との関連性が考えられる
- ✓ 魚類・水生昆虫の砒素濃度は河川底質との関連性はみられない

> 既存資料との比較

- ✓ 植物相・植生は噴出前後の変化はみられない(重要種のうちヒメイチゲは未確認)
- ✓ 樹木影響度は噴出箇所付近での回復傾向がみられないことから、噴出との関連性が 考えられる
- ✓ 鳥類相・魚類相・水生昆虫相・甲殻類は噴出前後の変化はみられない

口 経過報告

- ▶ 第2回委員会(24/3/29) 意見
 - ✓ 生態系に係る委員の助言、現地視察を踏まえ実施計画を策定する
 - ✓ 魚類の砒素分析は、肝臓と可食部をわけて分析する
- ▶ 第3回委員会(24/8/29) 意見
 - ✓ 対照区位置の変更は問題ない
 - ✓ 分析は、砒素、カドミウム、鉛、水銀を実施する(ネズミ類・魚類・底生動物)

2024年調査

- ▶ 第4回委員会(24/12/25)意見
 - ✓ 距離による影響(植物等)・砒素の蓄積(ネズミ類)では噴出との関連性が考えられる
 - ✓ 生態系への影響は単年度では判断できないため、モニタリングを継続する
 - ✓ 次年度は、「河川の底質の地点数を追加」「噴出影響のない地域の魚類の砒素分析を追加」「白濁水流路箇所を追加」した調査を行うことが望ましい
- ▶ 第5回委員会までの取り組み
 - ✓ 第4回委員会までの意見を踏まえた2025年調査計画(案)を検討

□ 2025年調査計画(案)

> 調査の方向性

【距離による影響】

✓ 調査区の追加:D基地より南側(白濁水流路含む)

【砒素の蓄積】

- ✓ 調査区の追加:D基地より南側(白濁水流路含む)
- ✓ 魚類調査地区の追加:比較対象として噴出の影響を受けていない対照区を追加
- ✓ 河川底質箇所の追加:ニセコアンベツ三号川合流前後に分析箇所を追加

【既存資料との比較】

- ✓ 2024年度に比較は終了、以下の項目のみ補足調査を実施
 - ⇒ 植物相:重要種ヒメイチゲを対象とした春季調査を実施
 - ⇒ 樹木影響度:夏季調査を実施

7. 噴出による生態系(動植物)への影響

□ 2025年調査計画(案)

調査	調査項目	調査	202	24年調査日	時期	2025£	丰調査計画](案)	備考				
目的	MEXI	時期	春季	夏季	秋季	春季	夏季	秋季	, J				
	植物相	夏		•			•						
	植生	E 夏 ● ●											
距離による影	展葉状況	春・夏	•	•		•	•		- 噴出後の年変動を把握するため、2025年も継続調査を実施				
響	ネズミ類	夏		•			•		南側にコドラートを追加				
	鳥類相	初夏		•			•						
	昆虫類相	夏		•			•						
	ネズミ類	夏		•			•		噴出後の年変動を把握するため、2025年も継続調査を実施				
砒素の 蓄積	魚類	夏		•			•		南側にコドラートを追加 河川底質の分析を実施				
	水生昆虫	夏		•			•						
	植物相	春・夏・秋	•	•	•	•			比較は2024年に終了 2025年は春季にヒメイチゲのみ補足調査を実施				
	植生	夏		•					比較は2024年に終了				
既存調	樹木影響度	夏		•			•		比較は2024年に終了 2025年は夏季に補足調査を実施				
査との比較	鳥類相	初夏		•									
TP#X	魚類相	夏		•					比較は2024年に終了				
	水生昆虫相	夏		•					」」」」」」」」				
	甲殼類	夏		•									

□ 2025年調査計画(案)

- ▶ 調査地区の設定:距離による影響
 - ✓ 植物相・植生・展葉状況・ネズミ類・鳥類 相・昆虫類相の調査を実施
 - ✓ 調査区として下記の18コドラートを設置

0m-1 · 0m-2 · 0m-3 100m-1 · 100m-2 · 100m-3

200m-1 · 200m-2 · 200m-3

300m-1 · 300m-2 · 300m-3

400m-1 · 400m-2 · 400m-3

500m-1 · 500m-2 · 500m-3

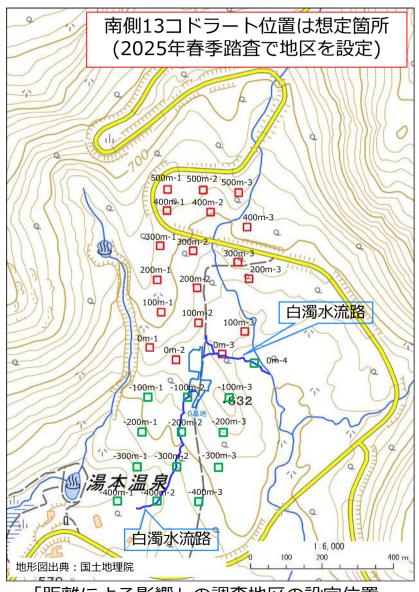
√ 新たに南側の調査区として下記の13コドラートを設置

0m-4

-100m-1 · -100m-2 · -100m-3

-200m-1 ·-200m-2 ·-200m-3

-300m-1 · -300m-2 · -300m-3


-400m-1 ·-400m-2 ·-400m-3

凡 例

): 調査区(18コドラート)

: 追加予定調査地区(南側13コドラート)

□ : D基地位置

「距離による影響」の調査地区の設定位置

□ 2025年調査計画(案)

- > 調査地区の設定: 砒素の蓄積
 - ✓ ネズミ類・魚類・水生昆虫の調査を実施
 - ✓ 調査区と対照区で生体中の砒素分析を実施
 - ネズミ類

調査区:北側18コドラート・南側13コドラート

対照区:3地区9コドラート

魚類

調査区:3箇所(St.1~St.3: ニセコアンベツニ号川)

対照区:3筒所(新設*)

※2024年にSt.4で捕獲ができなかったため別水系も

含め今後検討

• 水生昆虫

調査区:3箇所(St.1~St.3: ニセコアンベツニ号川)

対照区:1箇所(St.4: ニセコアンベツ三号川)

- ✓ 河川底質の砒素分析を実施
 - 試料採取場所:魚類・水生昆虫の調査箇所、ニセコアンベツニ号川と三号川の合流前後
- ✓ 分析項目は砒素のみ

凡例

🔲 : 調査区(北側18コドラート)

□: 追加予定調査地区(南側13コドラート)

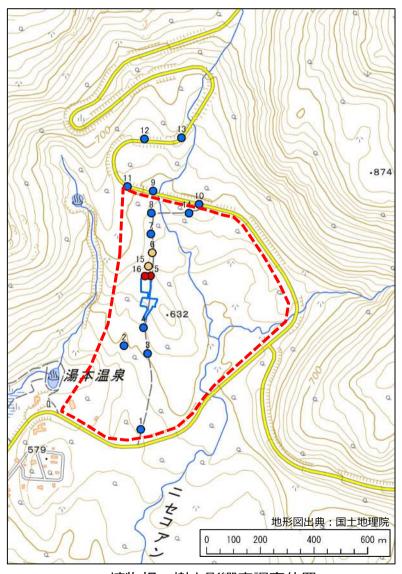
□: A基地~D基地位置

無類・水生昆虫調査位置(調査区・対照区)

○ : 河川底質調査位置(調査区・対照区)

南側13コドラート位置は想定箇所 (2025年春季踏査で地区を設定)

「砒素の蓄積」の調査地区の設定位置


7. 噴出による生態系(動植物)への影響

□ 2025年調査計画(案)

- > 調査地区の設定: 既存調査との比較
 - ✓ 植物相・樹木影響度の調査を実施
 - ✓ 植物相は2024年に生育が確認されなかった ヒメイチゲの補足調査(春季)
 - ✓ 樹木影響度は16箇所の補足調査(夏季)

凡 例
 ○ 影響度0
 ○ 影響度1
 ○ 影響度2
 ○ 影響度2
 ○ 影響度3
 ● 影響度4

区分	評価	評価の基準
0	影響なし	白い粉の被覆は見られない。通常の夏季のダケカンバ林の状態
1	影響小	白い粉の被覆はあるが、通常の夏季のダケカンバ林の状態
2	影響あり	白い粉の被覆があり、林間部に萎れ等の異変がみられる
3	影響大	林冠は落葉しかかっており、落葉初期(秋季)のような状態
4	枯損	林冠の葉は消失しているか、枯葉が残るのみ。落葉期(冬季)のような状態

植物相・樹木影響度調査位置

8. 温泉資源への影響

ロ 温泉資源への対応状況

> 経緯

✓ 近傍の温泉事業者において、温泉地(大湯沼)の堆積泥が泥パック等のリラクゼーション用品に利用されており、井戸噴出時に温泉への排水流入があったことなどから、堆積泥への影響が懸念(温泉水質の変化など)されている、このため、本委員会としては、温泉の水質や泥成分の噴出前後の比較を行うことで温泉資源に対する噴出影響の有無について確認することとした

▶ 事業者実施モニタリング

- ✓ 大湯沼を含めた調査地周辺地域の8つの温泉地で噴出以前より温泉調査(水質基本項目・泉温・イオン項目など、頻度:1回/月)が継続されている
- √ 大湯沼では、送湯管に設置された温度ロガーによる10分ごとの気温泉温計測が、2021年より継続されている

> 本委員会による調査概要

- ✓ 事業者実施モニタリングデータのとりまとめ
- ✓ 温泉泥試料(噴出前/噴出後)の各種分析
- ✓ 噴出影響を受けていない温泉泥(噴出前試料)を回収する ためのコア採取および年代測定

温泉	温泉泥 採取日時		目的	分析項目	備考
大湯沼	噴出前	2024/10/17	噴出影響を受けいていか	放射性セシウムによる 年代測定の後、下段 の各試験を実施予定	年代測定を実施中
人勿泊	噴出後	2023年10月	噴出影響を受けた温泉泥 の性状確認	量試験、過酸化水素	温泉事業者より提供 施設貯留槽から回収 X線回折は実施予定
小湯沼	噴出後	2024/10/17	大湯沼との比較のため	溶出量試験、全含有 量試験、過酸化水素 pH、ORPなど	

ロ 本委員会による調査

> 採取目的

- ✓ 大湯沼で噴出以前に堆積した過去の泥 (沈殿物)を採取し、噴出前後での成分 変化等を確認する
- ✓ 小湯沼においては、大湯沼との比較用に 採取した

> 採取地点

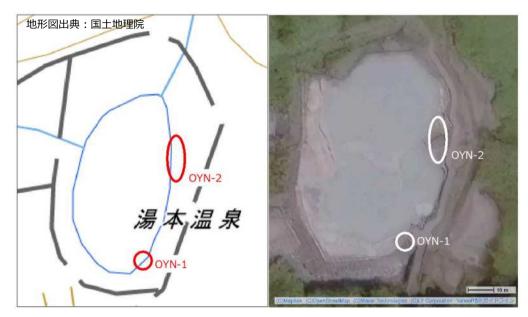
✓ 大湯沼: 2地点 (OYN-1·OYN-2)

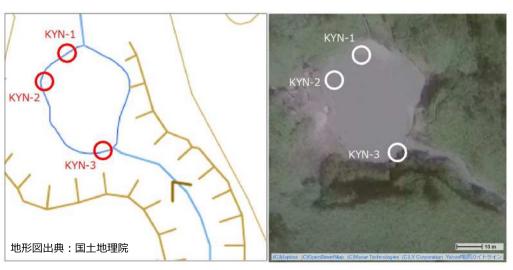
✓ 小湯沼: 3地点(KYN-1~3)

> 採取方法

✓ 大湯沼:塩ビ管押し込みによる柱状

試料採取

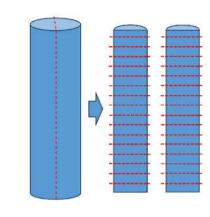

✓ 小湯沼:表層付近の攪乱試料採取



塩ビ管による採取(大湯沼) 攪話

攪乱試料の採取(小湯沼)

採取地点位置図(大湯沼)

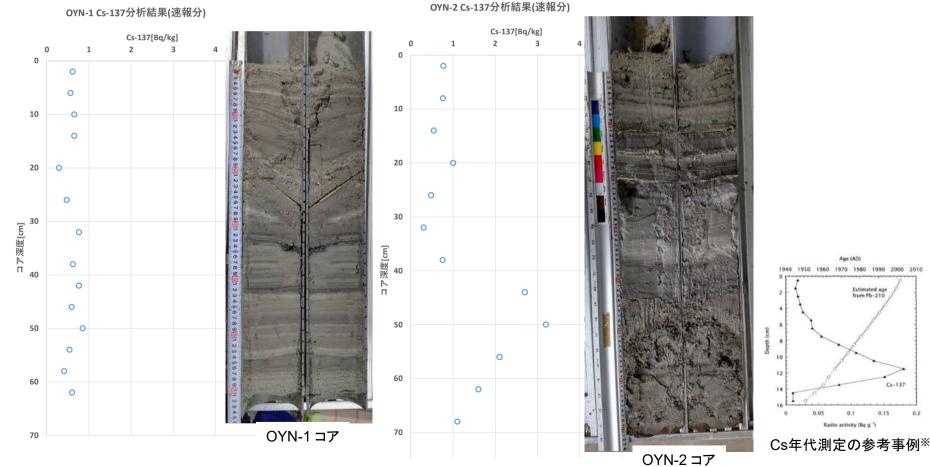

採取地点位置図(小湯沼)

8. 温泉資源への影響

口 温泉泥分析

> 分析対象

- ✓ 柱状コア試料を縦方向に半割して層相(土質性状)を確認した後、 深度方向に2cmピッチに分割して分析試料とした
- ✓ 分析にあたってはコアの堆積状況を考慮し、2~3ピッチおきに測定した


> 分析項目

✓ 放射性セシウム年代測定を実施した後、噴出以前の年代の深度試料 について、各種分析を実施する

分析方法	項目	方法
放射性セシウム測定	セシウム137	ゲルマニウム半導体によるγ 線スペクトロメトリー
土壌溶出量試験	砒素・セレン・カドミウム・鉛・六価 クロム・総水銀・ふっ素・ほう素	環境省告示第46号
溶出水の水質	pH・電気伝導率	JIS K 0102
/台山小り/小貝	酸化還元電位	河川水質試験方法(案)Ⅱ-6
全含有量試験	砒素・セレン・カドミウム・鉛・六価 クロム・総水銀・ふっ素・ほう素	底質調査法
土懸濁液のpH	рН	JGS0211-2009 2.2
酸性化可能性試験	pH(H ₂ O ₂)	JGS0211-2009 2.5.3
X線回折	定方位法	-

口 年代測定結果(経過報告)

- ✓ 放射性セシウム測定に際して、定量下限値0.5 Bq/kgで高感度測定を実施した
- ✓ OYN-2コアでは概ね参考事例と同様の傾向を示したのに対し、OYN-1コアではセシウムの明瞭なピークが認められなかったことから堆積環境(大湯沼での浚渫工事の影響など)に起因した擾乱の可能性を検証することとしている

※佐々木ら(2010). 鉛-210・セシウム-137法における年代測定ならびに花粉分析に基づく朱鞠内湖集水域における過去50年間の植生復元 日本花粉学会会誌,**56**,31-43.

9. 事業者実施モニタリングの状況

ロ 噴出による汚染範囲と濃度・噴出による急性および慢性の人健康影響

	観測項目		観測期間	NITOSC IXI	観測地点数		
種別	モニタリング内容	噴出以前	噴出後	観測項目	(掘削点離隔)	観測頻度	
	硫化水素ガスモニタリング	なし	2023/6/30~8/30終了	硫化水素	12地点 (最遠点4km)	毎日	
大気	大湯沼での硫化水素ガスモニタリング	なし	2024/7/31~8/7	硫化水素	2地点(400m)	10分ごと	
Λxι	定点での大気粉塵モニタリング (エアサンプラー使用)	なし	2023/7/20~2024/11/14 冬季観測停止中 2025年5月に再開予定	砒素(全箇所),クロム,ニッケル,マンガン,鉛(一部)	最大17地点 継続4地点(800m)	不定期 (砒素のみ)	
水質	河川水、表流水、施設利用水 の水質モニタリング	なし	■噴出直後は毎日観測 2023/6/30~11/14 ■冬季は月1回観測 2023年12月~2024年3月 2024年11月~継続中 ■春~秋は週1回観測 2024/3/18~2024/9/18	pH,EC,自然由来8項目, COD,SS,溶存イオン, 鉄,マンガン等・32項目	最大41地点 継続13地点 (最遠点16km)	左記参照	
	地下水観測孔の水質モニタリング	なし	2023/10/24設置、2024年 は6月~11月で毎月観測 11月より自動計測開始	pH,EC,自然由来8項目 自動計測(水位,温度,EC)	C基地下流に2地点 (最遠点0.4km)	月1回	
	噴出物の定性分析	なし	2023/6/30 (噴出直後に試料採取)	XRD (不定方位),自然由 来8項目の溶出含有	6地点 (半径700m範囲)	10	
	地表面や草木表面に沈着した白い堆積物を採 取分析	なし	2023/8/5~8/6	pH,EC,自然由来8項目の溶 出含有(環告18号19号)	8地点 (半径700m範囲)	1回	
	表層土壌(0~5cm,5~50cm)を採取分析	なし	2023/9/22~9/27	pH,EC,自然由来8項目の溶 出含有(環告18号19号)	17地点 (半径700m周囲)	10	
土壌	C基地覆土材を採取分析	なし	2023/10/21	pH,EC,自然由来8項目の溶 出含有(環告18号19号)	20地点 (最遠点700m)	10	
	白い堆積物の繰り返し溶出試験	なし	2023年10月末	pH,EC,自然由来8項目	2地点(D基地北側)	10	
	新規地下水観測孔のコアを採取分析	なし	2023/10/16~10/23	pH,EC,自然由来8項目の溶 出含有(環告18号19号)	C基地下流に2地点 (最遠点0.4km)	1回	
	D基地周辺土壌(0~105cm)を採取分析	なし	2023/11/15~11/20	pH,EC,自然由来8項目の溶 出含有(環告18/19),ORP	19地点	1回	

青字:前回委員会(2024/12/25)からの更新項目

9. 事業者実施モニタリングの状況

ロ 噴出による生態系(動植物)への影響

	観測項目		観測期間	観測項目	観測地点数	観測頻度	
大項目	モニタリング内容	噴出以前	噴出後	1	(掘削点離隔)		
	踏査による植生調査	2019年~	2023年7月,9月	踏査による植生状態確認	(半径700m周囲)	必要に応じて	
森林	<u> 頃且による他土神且</u>	2023年2月	2023年7月,3月	コドラート調査	(十往700111周囲)	必安に心して	
	ドローンによる噴出物被覆範囲の画像解析	なし	2023/7/3~8/28	空撮画像解析	(半径500m周囲)	1回	
	ダケカンバ群落の非破壊検査	<i>t</i> >1	2023/10/8	超音波測定による幹内部	掘削現場の隣接林	1 🗔	
	タケカノハ杆洛の弁破場快直 	なし	2023/10/6	状況把握	畑門児物の隣接性	10	
生物	ニセコアンベツ2号川における魚類目視調査	2023年2月	2023年7月	魚類,底生動物	(上流側800m,下流	年1回	
	および、底生生物等の捕獲調査	2023年2月	2023年7月	思短, 医主動物	側2km)	+10	

ロ 大湯沼の温泉資源への影響

	観測項目		観測期間	観測項目	観測地点数	観測頻度	
大項目	モニタリング内容	噴出以前	噴出後		(掘削点離隔)		
温泉	対象地周辺の温泉施設における 定期的な温泉水質モニタリング	201/年5月~2023	■毎週観測※ 噴出後~2023年10月 ■毎月観測 2023年11月~継続中	水温,流量,pH,EC, 主要溶存イオン, T-CO ₂ ,SiO ₂	8地点 (最遠点7.5km)	月1回 ※掘削期間中 は週1回観測	
	大湯沼温泉施設におけるロガーモニタリング	2021年3月~ 噴出まで	噴出後~継続中	気温、泉温	1地点	10分ごと	
	大湯沼におけるロガーモニタリング (他機関提供データ)	2023年1月~ 噴出まで	噴出後~2025年2月分ま で受領	気温、湿度、気圧、 泉温、流量、pH、EC	1地点	10分ごと	
	大湯沼温泉以外の周辺温泉施設における ロガーモニタリング	2021年3月~ 噴出まで	噴出後~継続中	気温、気圧、揚湯量、 泉温	3地点	10分ごと、 15分ごと(湯 量)	

※掘削が開始された2023年5月から毎週観測に切り替えて観測されており、噴出後も2023年10月まで継続された

青字: 前回委員会(2024/12/25)からの更新項目

ロ 概略スケジュール

- > 段階的なアプローチ
 - ✓ 環境影響評価と環境回復にむけ段階的に取り組む
 - ✓ 調査結果とその評価に応じて適宜スケジュールを見直し、環境回復を確認していく
 - 第1期:現状評価・リスク評価手法の検討
 - 第2期:環境回復の方法の検討・リスク評価 ⇒ 環境回復の実施
 - 第3期:環境回復中・回復後のモニタリング ⇒ 結果の評価

──第5回委員会時点

			2023年度		2024年度			2025年度			2026年度				2027年度					
実施項目		7-9月	10-12月	1-3月	4-6月	7-9月	10-12月	1-3月	4-6月	7-9月	10-12月	1-3月	4-6月	7-9月	10-12月	1-3月	4-6月	7-9月	10-12月	1-3月
		第1期 現状評価・リスク評価手法の検討							第2期 環境回復の方法検討・リスク評価				第3期 環境回復中・後のモニタリング						結果 評価	
委員会			•	•		•	•	•	※がに	10人	•	•		•		•		•		•
	①汚染範囲と濃度				•	•	•													
評価対象	②人健康への影響	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	
	③生態系への影響				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	④温泉資源への影響			•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	
リスク評価									•	•	•	•								
環境回復の方法検討									•	•	•	•	•							
住民対話			•	•		•	•	•			•	•		•		•		•		•
情報提供(HP更新など)			•	•		•	•	•			•	•		•		•		•		•
環境回復													•	•	•					

【凡例】●:おもな調査・評価・実施時期 •:評価結果に応じて適宜対応する時期

ロ 評価委員会(第5回)での審議結果のとりまとめ

く噴出による汚染範囲と濃度>

土壌調査(詳細調査結果)

- ✓ 汚染範囲:自然由来重金属等の分布より、平面的な汚染の範囲が確定した
- ✓ 汚染物質:汚染範囲の分布から、蒸気噴出による汚染物質は砒素であり、ふっ素とほう素は噴出による影響が不明瞭ながら認められるがその濃度は低く、水銀は調査地に元来分布しているものと考えられ、カドミウム・セレン・六価クロムの汚染は認められない
- ✓ モニタリングの必要性:来春の融雪後(2025年5~6月)の土壌調査は、砒素を対象としその他の物質は適宜実施する
- ✓ 追加調査の必要性:網羅的な調査(格子設定による調査)により汚染範囲は把握されたが、噴出時に流出した<u>白濁水の流路沿いの土</u> 壌調査も実施し、汚染状況について把握する
- ✓ 今後の検討:詳細調査結果と来春予定の流路沿いの土壌調査の結果もふまえ、今後に環境修復の方法と大雨時などの対応を検討する
- ✓ 噴出物:砒素の溶出量と全含有量を評価するための、基礎的な性状を把握するための試験(粒度・組成分析・構成鉱物)を実施した
- ✓ 植物(山菜):経年変化を把握するため、来春の融雪後(2025年5~6月)に追加調査を実施する

<噴出による急性および慢性の人健康影響>

大気シミュレーション

- ✓ 本検討の評価対象を再整理した結果、硫化水素はガス態、砒素は水滴と粉じんが合わさった"飛散粒子"として条件を設定し、今後に 影響範囲推定および曝露量推定を実施する
- ✓ 解析のアウトプットは、硫化水素は短期曝露、砒素は噴出期間中の総量を対象とする

<噴出による生態系(動植物)への影響>

▶ 生態系モニタリング

- ✓ これまでのモニタリング結果の総括:距離による影響は植物相・植生・展葉状況・昆虫類で噴出との関連性が考えられた、砒素の蓄積はネズミ類で噴出箇所付近の肝臓中砒素濃度が高かった、既存資料との比較では植物重要種一種が未確認および噴出箇所付近で樹木影響の回復がみられなかった
- ✓ 今後の調査方針および予定:距離による影響および砒素の蓄積は白濁水流路周辺も追加し経過を確認する、既存資料との比較は植物 相・樹木影響度のみ今後も経過を確認する

<温泉資源への影響>

> 大湯沼堆積泥の調査

✓ 調査・分析方法: 現在の分析を引き続き行い、噴出以前の年代の深度試料について、各種分析を実施する

<事業者実施モニタリングの状況>

- 第4回委員会以降のモニタリング結果
 - ✓ 地下水モニタリング:観測孔B-1での砒素濃度の変化状況を今後も注視していく